Counting lattice walks by winding angle

Andrew Elvey Price

CNRS, Université de Tours

April, 2025

Counting lattice walks by winding angle

LATTICE WALKS BY WINDING ANGLE

Counting lattice walks by winding angle

TALK OUTLINE

- Part 1: Introduction to winding
- Part 2: Functional equations
- Part 3: Solution to functional equations
 - Conversion to analytic functional equation à la petit livre jaune
 - Solution to analytic functional equation
- Part 4: Some nice special cases

Part 1: Introduction to winding

[Spitzer, 1958]: The winding θ_t of two-dimensional Brownian motion at time *t* behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\theta_t}{\log(t)}\right) = \frac{1}{\pi} \frac{1}{1 + x^2}$$

[Spitzer, 1958]: The winding θ_t of two-dimensional Brownian motion at time *t* behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\theta_t}{\log(t)}\right) = \frac{1}{\pi} \frac{1}{1 + x^2}$$

Not realistic: dog can't go indefinitely close to legs

t

[Spitzer, 1958]: The winding θ_t of two-dimensional Brownian motion at time *t* behaves like

$$\lim_{t\to\infty} p\left(x = \frac{2\theta_t}{\log(t)}\right) = \frac{1}{\pi} \frac{1}{1+x^2}.$$

[Pitman, Yor, 1986]: For the same model, the part $\tilde{\theta}_t$ of the winding that happens outside some disk around • behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\tilde{\theta}_t}{\log(t)}\right) = \frac{1}{e^{\frac{\pi x}{2}} + e^{-\frac{\pi x}{2}}}$$

[Bélisle, 1989]: Winding of a random walk has same behaviour

t

[Spitzer, 1958]: The winding θ_t of two-dimensional Brownian motion at time *t* behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\theta_t}{\log(t)}\right) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

[Pitman, Yor, 1986]: For the same model, the part $\tilde{\theta}_t$ of the winding that happens outside some disk around • behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\tilde{\theta}_t}{\log(t)}\right) = \frac{1}{e^{\frac{\pi x}{2}} + e^{-\frac{\pi x}{2}}}$$

[Bélisle, 1989]: Winding of a random walk has same behaviour [Rudnick, Hu, 1987]: Winding $\hat{\theta}_t$ of brownian motion conditioned to avoid a disk around • behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\hat{\theta}_t}{\log(t)}\right) = \frac{\pi}{\left(e^{\frac{\pi x}{2}} + e^{-\frac{\pi x}{2}}\right)^2}$$

t

[Spitzer, 1958]: The winding θ_t of two-dimensional Brownian motion at time *t* behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\theta_t}{\log(t)}\right) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

[Pitman, Yor, 1986]: For the same model, the part $\tilde{\theta}_t$ of the winding that happens outside some disk around • behaves like

$$\lim_{t \to \infty} p\left(x = \frac{2\tilde{\theta}_t}{\log(t)}\right) = \frac{1}{e^{\frac{\pi x}{2}} + e^{-\frac{\pi x}{2}}}$$

[Bélisle, 1989]: Winding of a random walk has same behaviour [Rudnick, Hu, 1987]: Winding $\hat{\theta}_t$ of brownian motion conditioned to avoid a disk around • behaves like

$$\lim_{t\to\infty} p\left(x = \frac{2\hat{\theta}_t}{\log(t)}\right) = \frac{\pi}{\left(e^{\frac{\pi x}{2}} + e^{-\frac{\pi x}{2}}\right)^2}.$$

Claim: Same behaviour for our models

Counting lattice walks by winding angle

PREVIOUS EXACT RESULTS

This work: Solution for any step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$.

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n,\theta}$ of paths in \mathbb{Z}^2 avoiding (0,0) with steps in *S* from (1,0) to (i,j) of length *n* and winding angle θ .

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n,\theta}$ of paths in \mathbb{Z}^2 avoiding (0,0) with steps in *S* from (1,0) to (i,j) of length *n* and winding angle θ . **Equivalently:** count walks starting at \blacksquare by length and end point.

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n,\theta}$ of paths in \mathbb{Z}^2 avoiding (0,0) with steps in *S* from (1,0) to (i,j) of length *n* and winding angle θ . **Equivalently:** Determine the generating function

$$\mathsf{W}(x,y;t,s) := \sum_{i,j,n,\theta} q_{i,j,n,\theta} x^i y^j t^n s^{\left\lfloor \frac{\theta}{2\pi} \right\rfloor}.$$

Counting lattice walks by winding angle

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n,\theta}$ of paths in \mathbb{Z}^2 avoiding (0,0) with steps in *S* from (1,0) to (i,j) of length *n* and winding angle θ . **Equivalently:** Determine the generating function

$$\mathsf{W}(x,y;t,s) := \sum_{i,j,n,\theta} q_{i,j,n,\theta} x^i y^j t^n s^{\left\lfloor \frac{\theta}{2\pi} \right\rfloor}.$$

Equivalent because: θ can be recovered from monomial using

$$\theta = 2\pi \left\lfloor \frac{\theta}{2\pi} \right\rfloor + Arg(x + iy)$$

where we define $Arg(z) \in [0, 2\pi)$.

PREVIEW: DOUBLE KREWERAS EXCURSIONS

Counting lattice walks by winding angle

PREVIEW: DOUBLE KREWERAS EXCURSIONS

Define

$$T(u,q) = \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)/2} (u^{n+1} - u^{-n}),$$

Let $q := e^{2i\gamma} = t + t^2 + 7t^3 + 23t^4 + 122t^5 + 554t^6 + \cdots$ be the unique series satisfying

$$q\frac{T(q,q^6)^3}{T(q^3,q^6)^3} = \frac{t}{1+2t}$$

The generating function $\mathsf{E}(t,s)$ for double kreweras excursions $(1,0) \rightarrow (1,0)$ is given by

$$\mathsf{E}(t,s) = \frac{\left(T\left(q^{3},q^{6}\right)T\left(q^{2}s,q^{6}\right) - 2T\left(q^{3}s,q^{6}\right)T\left(q^{2},q^{6}\right) + T\left(q^{3},q^{6}\right)T\left(\frac{q^{2}}{s},q^{6}\right)\right)}{tq(1-s^{-1})T\left(q,q^{6}\right)T\left(s,q^{6}\right)}$$
$$= 1 + 5t^{2} + 8t^{3} + 62t^{4} + 216t^{5} + (s^{-1} + 1199 + s)t^{6} + \cdots$$

Preview: Double Kreweras excursions (using ϑ)

Define the Jacobi theta function

$$\vartheta(z,\tau) := \sum_{n=0}^{\infty} (-1)^n e^{i\pi\tau(n+\frac{1}{2})^2} \left(e^{(2n+1)iz} - e^{-(2n+1)iz} \right)$$
$$= -ie^{\frac{i\pi\tau}{4}} e^{-iz} T(e^{2iz}, e^{2i\pi\tau}).$$

Let $\gamma = \frac{\pi \tau}{6}$ and τ be determined by

$$e^{-4i\gamma} \frac{\vartheta(\gamma,\tau)^3}{\vartheta(3\gamma,\tau)^3} = \frac{t}{1+2t},$$

The generating function $\mathsf{E}(t,s)$ for double kreweras excursions $(1,0) \rightarrow (1,0)$ is given by

$$\mathsf{E}(t, e^{2i\kappa}) = -\frac{\left(2\vartheta\left(2\gamma\right)\vartheta\left(3\gamma+\kappa\right)-\vartheta\left(3\gamma\right)\vartheta\left(2\gamma+\kappa\right)-e^{-2i\kappa}\vartheta\left(3\gamma\right)\vartheta\left(2\gamma-\kappa\right)\right)e^{2i\gamma}}{t\left(1-e^{-2i\kappa}\right)\vartheta\left(\gamma\right)\vartheta\left(\kappa\right)}$$
$$= 1+5t^{2}+8t^{3}+62t^{4}+216t^{5}+(s^{-1}+1199+s)t^{6}+\cdots$$

Part 2: Functional equations for walks by winding number

Some refined walk types and generating functions

• Terminating walk, T(t, s): walk ending at (0, 0)

Some refined walk types and generating functions

- Terminating walk, T(t, s): walk ending at (0, 0)
- Rising walk, R(x; t, s): final step moves up through dotted line

Some refined walk types and generating functions

- Terminating walk, T(t, s): walk ending at (0, 0)
- Rising walk, R(x; t, s): final step moves up through dotted line
- Sinking walk, $\frac{1}{y}S(x; t, s)$: final step moves down through dotted line

Some refined walk types and generating functions

- Terminating walk, T(t, s): walk ending at (0, 0)
- Rising walk, $\mathsf{R}(x; t, s)$: final step moves up through dotted line
- Sinking walk, $\frac{1}{y}S(x; t, s)$: final step moves down through dotted line

No winding factor:

 $\begin{aligned} & (\textbf{Walk} + \textbf{step}) \quad \text{or empty walk} = \textbf{walk} \quad \text{or Terminating walk} \\ & \textbf{W}(x, y; t, 1) t P(x, y) + \quad x \quad = \textbf{W}(x, y; t, 1) + \quad \textbf{T}(t, s). \end{aligned}$

Some refined walk types and generating functions

- Terminating walk, T(t, s): walk ending at (0, 0)
- Rising walk, $\mathsf{R}(x; t, s)$: final step moves up through dotted line
- Sinking walk, $\frac{1}{y}S(x; t, s)$: final step moves down through dotted line

No winding factor:

(Walk + step) or empty walk = walk or Terminating walkW(x, y; t, 1)tP(x, y) + x = W(x, y; t, 1) + T(t, s).

With winding factor correction:

$$\mathsf{W}(x,y)tP(x,y) + x = \mathsf{W}(x,y) + \mathsf{T} + \left(\frac{1}{s} - 1\right)\mathsf{R}(x) + (s-1)\frac{1}{y}\mathsf{S}(x)$$

Some refined walk types and generating functions

- Terminating walk, T(t, s): walk ending at (0, 0)
- Rising walk, R(x; t, s): final step moves up through dotted line
- Sinking walk, $\frac{1}{y}S(x; t, s)$: final step moves down through dotted line

No winding factor:

 $(Walk + step) \quad \text{or empty walk} = walk \quad \text{or Terminating walk} \\ W(x, y; t, 1)tP(x, y) + x \quad = W(x, y; t, 1) + T(t, s).$

With winding factor correction:

$$\mathsf{W}(x,y)tP(x,y) + x = \mathsf{W}(x,y) + \mathsf{T} + \left(\frac{1}{s} - 1\right)\mathsf{R}(x) + (s-1)\frac{1}{y}\mathsf{S}(x)$$

Uniquely defines series (along with relation coming from definition of R and S) but hard to analyse directly **Before analysis:** Refine functional equation

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j .

Counting lattice walks by winding angle

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j . Equation for $Q_0(x, y; t, s)$:

 $Q_0(x, y)tP(x, y) + x = Q_0(x, y) + T_0 - R(x) + sy^{-1}S(x) + R_1(y) - xS_1(y)$

Counting lattice walks by winding angle

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j . Equation for $Q_0(x, y; t, s)$:

 $Q_0(x, y)tP(x, y) + x = Q_0(x, y) + T_0 - F_0(x, y) + F_1(x, y)$

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j . Equations defining $Q_j(x, y; t, s)$ for j = 0, 1, 2, 3:

$$\begin{aligned} \mathsf{Q}_{0}(x,y)tP(x,y) + x &= \mathsf{Q}_{0}(x,y) + \mathsf{T}_{0} - \mathsf{F}_{0}(x,y) + \mathsf{F}_{1}(x,y) \\ \mathsf{Q}_{1}(x,y)tP(x,y) &= \mathsf{Q}_{1}(x,y) + \mathsf{T}_{1} - \mathsf{F}_{1}(x,y) + \mathsf{F}_{2}(x,y) \\ \mathsf{Q}_{2}(x,y)tP(x,y) &= \mathsf{Q}_{2}(x,y) + \mathsf{T}_{2} - \mathsf{F}_{2}(x,y) + \mathsf{F}_{3}(x,y) \\ \mathsf{Q}_{3}(x,y)tP(x,y) &= \mathsf{Q}_{3}(x,y) + \mathsf{T}_{3} - \mathsf{F}_{3}(x,y) + \mathsf{F}_{4}(x,y) \\ \mathsf{F}_{4}(x,y) &= s^{-1}\mathsf{F}_{0}(x,y) \end{aligned}$$

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j . Equations defining $Q_j(x, y; t, s)$ for j = 0, 1, 2, 3:

$$\begin{aligned} \mathsf{Q}_{0}(x,y)tP(x,y) + x &= \mathsf{Q}_{0}(x,y) + \mathsf{T}_{0} - \mathsf{F}_{0}(x,y) + \mathsf{F}_{1}(x,y) \\ \mathsf{Q}_{1}(x,y)tP(x,y) &= \mathsf{Q}_{1}(x,y) + \mathsf{T}_{1} - \mathsf{F}_{1}(x,y) + \mathsf{F}_{2}(x,y) \\ \mathsf{Q}_{2}(x,y)tP(x,y) &= \mathsf{Q}_{2}(x,y) + \mathsf{T}_{2} - \mathsf{F}_{2}(x,y) + \mathsf{F}_{3}(x,y) \\ \mathsf{Q}_{3}(x,y)tP(x,y) &= \mathsf{Q}_{3}(x,y) + \mathsf{T}_{3} - \mathsf{F}_{3}(x,y) + \mathsf{F}_{4}(x,y) \\ \mathsf{F}_{4}(x,y) &= s^{-1}\mathsf{F}_{0}(x,y) \end{aligned}$$

Refinement: Write

 $W(x, y; t, s) = Q_0(x, y; t, s) + Q_1(x, y; t, s) + Q_2(x, y; t, s) + Q_3(x, y; t, s),$

where each Q_j counts walks ending in a specific quadrant Q_j . Equations defining $Q_j(x, y; t, s)$ for j = 0, 1, 2, 3:

$$\begin{aligned} \mathsf{Q}_{0}(x,y)tP(x,y) + x &= \mathsf{Q}_{0}(x,y) + \mathsf{T}_{0} - \mathsf{F}_{0}(x,y) + \mathsf{F}_{1}(x,y) \\ \mathsf{Q}_{1}(x,y)tP(x,y) &= \mathsf{Q}_{1}(x,y) + \mathsf{T}_{1} - \mathsf{F}_{1}(x,y) + \mathsf{F}_{2}(x,y) \\ \mathsf{Q}_{2}(x,y)tP(x,y) &= \mathsf{Q}_{2}(x,y) + \mathsf{T}_{2} - \mathsf{F}_{2}(x,y) + \mathsf{F}_{3}(x,y) \\ \mathsf{Q}_{3}(x,y)tP(x,y) &= \mathsf{Q}_{3}(x,y) + \mathsf{T}_{3} - \mathsf{F}_{3}(x,y) + \mathsf{F}_{4}(x,y) \\ \mathsf{F}_{4}(x,y) &= s^{-1}\mathsf{F}_{0}(x,y) \end{aligned}$$

To simplify, write K(x, y; t) = 1 - tP(x, y). **To solve:**

$$\begin{split} \delta_{0,j} x &= K(x,y;t) \mathsf{Q}_j(x,y) + \mathsf{T}_j - \mathsf{F}_j(x,y) + \mathsf{F}_{j+1}(x,y), \\ \mathsf{F}_4(x,y) &= s^{-1} \mathsf{F}_0(x,y). \end{split}$$

Counting lattice walks by winding angle

Part 3: Solving functional equation via analytic functional equation

à la petit petit livre jaune

Counting lattice walks by winding angle

SOLVING FUNCTIONAL EQUATIONS

To solve:

$$\begin{split} \delta_{0,j} x &= K(x,y;t) \mathsf{Q}_j(x,y) + \mathsf{T}_j - \mathsf{F}_j(x,y) + \mathsf{F}_{j+1}(x,y), \\ \mathsf{F}_4(x,y) &= s^{-1} \mathsf{F}_0(x,y). \end{split}$$

Solution idea: Based on methods used for quadrant walks [Fayolle, Ianogorodski, 1979], [Fayolle, Ianogorodski, Malyshev, 1999], [Raschel, 2010], similarly to [EP, 2022] for 3/4-plane walks

SOLVING FUNCTIONAL EQUATIONS

To solve:

$$\begin{split} \delta_{0,j} x &= K(x,y;t) \mathsf{Q}_j(x,y) + \mathsf{T}_j - \mathsf{F}_j(x,y) + \mathsf{F}_{j+1}(x,y), \\ \mathsf{F}_4(x,y) &= s^{-1} \mathsf{F}_0(x,y). \end{split}$$

Step 1: Fix t < 1/9 and parametrise $\overline{E}_t = \{(x, y) : K(x, y; t) = 0\}$:

$$\begin{aligned} x(\omega) &= x_0 + \frac{x_1}{\wp(\omega;\omega_1,\omega_2) + x_2}, \\ y(\omega) &= y_0 + \frac{y_1}{\wp(\omega - \omega_3/2;\omega_1,\omega_2) + y_2}, \\ \overline{E}_t &= \{(x(\omega), y(\omega)) : \omega \in \mathbb{C}\}. \end{aligned}$$

Inherited transformation properties: $x(\omega)$ and $y(\omega)$ satisfy

SOLVING FUNCTIONAL EQUATIONS

To solve:

$$\begin{split} \delta_{0,j} x &= K(x,y;t) \mathsf{Q}_j(x,y) + \mathsf{T}_j - \mathsf{F}_j(x,y) + \mathsf{F}_{j+1}(x,y), \\ \mathsf{F}_4(x,y) &= s^{-1} \mathsf{F}_0(x,y). \end{split}$$

Step 1: Fix t < 1/9 and parametrise $\overline{E}_t = \{(x, y) : K(x, y; t) = 0\}$:

$$\begin{aligned} x(\omega) &= x_0 + \frac{x_1}{\wp(\omega;\omega_1,\omega_2) + x_2}, \\ y(\omega) &= y_0 + \frac{y_1}{\wp(\omega - \omega_3/2;\omega_1,\omega_2) + y_2}, \\ \overline{E}_t &= \{(x(\omega), y(\omega)) : \omega \in \mathbb{C}\}. \end{aligned}$$

Inherited transformation properties: $x(\omega)$ and $y(\omega)$ satisfy

•
$$x(\omega) = x(\omega + \omega_1) = x(\omega + \omega_2) = x(-\omega)$$

• $y(\omega) = y(\omega + \omega_1) = y(\omega + \omega_2) = y(\omega_3 - \omega)$

Step 2: Substitute $x \to x(\omega)$ and $y \to y(\omega)$ in functional equations

Functional equations: Algebraic \rightarrow analytic

Warm up: Consider just the first equation for t < 1/9 and |s| = 1. $x = K(x, y)Q_0(x, y) + T_0 - F_0(x, y) + F_1(x, y)$

Functional equations: Algebraic \rightarrow Analytic

Warm up: Consider just the first equation for t < 1/9 and |s| = 1.

$$x = K(x, y)\mathsf{Q}_0(x, y) + \mathsf{T}_0 - \mathsf{F}_0(x, y) + \mathsf{F}_1(x, y)$$

Powers of *x*, *y* positive \Rightarrow Converges when |x|, |y| < 1. to substitute $x \rightarrow x(\omega)$ and $y \rightarrow y(\omega)$, need to understand when $|x(\omega)| < 1$ and $|y(\omega)| < 1$.

The functions $x(\omega)$ and $y(\omega)$ for $\omega \in \mathbb{C}/(\omega_1\mathbb{Z})$

Warm up: Consider just the first equation for t < 1/9 and |s| = 1:

$$x = K(x, y)\mathsf{Q}_0(x, y) + \mathsf{T}_0 - \mathsf{F}_0(x, y) + \mathsf{F}_1(x, y)$$

Powers of *x*, *y* positive \Rightarrow Converges when |x|, |y| < 1. **Recall:**

 $F_0(x, y; t, s) \in \mathbb{Z}[[x, t, s]] + \frac{1}{y}\mathbb{Z}[[x, t, s]] \Rightarrow \text{Converges when } |x| < 1$ $F_1(x, y; t, s) \in \mathbb{Z}[[y, t, s]] + x\mathbb{Z}[[y, t, s]] \Rightarrow \text{Converges when } |y| < 1$ **Define:**

$$\begin{split} \tilde{F}_0(\omega) &= \mathsf{F}_0(x(\omega), y(\omega)), & \text{for } \omega \in \Omega_{-1} \cup \Omega_0, \\ \tilde{F}_1(\omega) &= \mathsf{F}_1(x(\omega), y(\omega)), & \text{for } \omega \in \Omega_0 \cup \Omega_1. \end{split}$$

Substitute $x \to x(\omega)$ and $y \to y(\omega)$ for $\omega \in \Omega_0$:

$$x(\omega) = \mathsf{T}_0 - \tilde{F}_0(\omega) + \tilde{F}_1(\omega).$$

General version: Consider all equations for t < 1/9 and |s| = 1: $\delta_{0,j}x = K(x, y; t)Q_j(x, y) + T_j - F_j(x, y) + F_{j+1}(x, y),$ $sF_4(x, y) = F_0(x, y).$

Define:

$$\begin{split} \tilde{F}_{0}(\omega) &= \mathsf{F}_{0}(x(\omega), y(\omega)), & \text{for } \omega \in \Omega_{-1} \cup \Omega_{0}, \\ \tilde{F}_{1}(\omega) &= \mathsf{F}_{1}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{0} \cup \Omega_{1}, \\ \tilde{F}_{2}(\omega) &= \mathsf{F}_{2}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{1} \cup \Omega_{2}, \\ \tilde{F}_{3}(\omega) &= \mathsf{F}_{3}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{2} \cup \Omega_{3}, \\ \tilde{F}_{4}(\omega) &= \mathsf{F}_{4}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{3} \cup \Omega_{4}. \end{split}$$

Substitute $x \to x(\omega)$ and $y \to y(\omega)$ for $\omega \in \Omega_j$ for j = 0, 1, 2, 3: $\delta_{0,j}x(\omega) = \mathsf{T}_j - \tilde{F}_j(\omega) + \tilde{F}_{j+1}(\omega).$

General version: Consider all equations for t < 1/9 and |s| = 1: $\delta_{0,j}x = K(x, y; t)Q_j(x, y) + T_j - F_j(x, y) + F_{j+1}(x, y),$ $sF_4(x, y) = F_0(x, y).$

Define:

$$\begin{split} \tilde{F}_{j}(\omega) &= \mathsf{F}_{j}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{j-1} \cup \Omega_{j} \\ \text{Substitute } x \to x(\omega) \text{ and } y \to y(\omega) \text{ for } \omega \in \Omega_{j} \text{ for } j = 0, 1, 2, 3: \\ \delta_{0,j} x(\omega) &= \mathsf{T}_{j} - \tilde{F}_{j}(\omega) + \tilde{F}_{j+1}(\omega). \end{split}$$

General version: Consider all equations for t < 1/9 and |s| = 1: $\delta_{0,j}x = K(x, y; t)Q_j(x, y) + T_j - F_j(x, y) + F_{j+1}(x, y),$ $sF_4(x, y) = F_0(x, y).$

Define:

$$\begin{split} \tilde{F}_{j}(\omega) &= \mathsf{F}_{j}(x(\omega), y(\omega)), & \text{for } z \in \Omega_{j-1} \cup \Omega_{j} \\ \text{Substitute } x \to x(\omega) \text{ and } y \to y(\omega) \text{ for } \omega \in \Omega_{j} \text{ for } j = 0, 1, 2, 3: \\ \delta_{0,j} x(\omega) &= \mathsf{T}_{j} - \tilde{F}_{j}(\omega) + \tilde{F}_{j+1}(\omega). \end{split}$$

Take analytic extensions to $\omega \in \mathbb{C}$ and add up equations: **To solve:**

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + \tilde{F}_4(\omega).$$

Counting lattice walks by winding angle

General version: Consider all equations for t < 1/9 and |s| = 1: $\delta_{0,j}x = K(x, y; t)Q_j(x, y) + T_j - F_j(x, y) + F_{j+1}(x, y),$ $sF_4(x, y) = F_0(x, y).$

Define:

$$\tilde{F}_j(\omega) = \mathsf{F}_j(x(\omega), y(\omega)), \qquad \qquad \text{for } z \in \Omega_{j-1} \cup \Omega_j$$

Substitute $x \to x(\omega)$ and $y \to y(\omega)$ for $\omega \in \Omega_j$ for j = 0, 1, 2, 3:

$$\delta_{0,j} x(\omega) = \mathsf{T}_j - \tilde{F}_j(\omega) + \tilde{F}_{j+1}(\omega).$$

Final equation: for $\omega \in \Omega_0$, $\omega + \omega_2 \in \Omega_4$ and $x(\omega) = x(\omega + \omega_2)$ and $y(\omega) = y(\omega + \omega_2)$, so

$$\tilde{F}_0(\omega) = \mathsf{F}_0(x(\omega), y(\omega)) = s\mathsf{F}_4(x(\omega), y(\omega)) = s\tilde{F}_4(\omega + \omega_2).$$

Take analytic extensions to $\omega \in \mathbb{C}$ and add up equations: **To solve:**

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + \tilde{F}_4(\omega).$$

General version: Consider all equations for t < 1/9 and |s| = 1: $\delta_{0,j}x = K(x, y; t)Q_j(x, y) + T_j - F_j(x, y) + F_{j+1}(x, y),$ $sF_4(x, y) = F_0(x, y).$

Define:

$$\tilde{F}_j(\omega) = \mathsf{F}_j(x(\omega), y(\omega)), \qquad \qquad \text{for } z \in \Omega_{j-1} \cup \Omega_j$$

Substitute $x \to x(\omega)$ and $y \to y(\omega)$ for $\omega \in \Omega_j$ for j = 0, 1, 2, 3:

$$\delta_{0,j} x(\omega) = \mathsf{T}_j - \tilde{F}_j(\omega) + \tilde{F}_{j+1}(\omega).$$

Final equation: for $\omega \in \Omega_0$, $\omega + \omega_2 \in \Omega_4$ and $x(\omega) = x(\omega + \omega_2)$ and $y(\omega) = y(\omega + \omega_2)$, so

$$\tilde{F}_0(\omega) = \mathsf{F}_0(x(\omega), y(\omega)) = s\mathsf{F}_4(x(\omega), y(\omega)) = s\tilde{F}_4(\omega + \omega_2).$$

Take analytic extensions to $\omega \in \mathbb{C}$ and add up equations: To solve:

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + s^{-1}\tilde{F}_0(\omega - \omega_2).$$

Counting lattice walks by winding angle

To solve:

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + s^{-1}\tilde{F}_0(z\omega - \omega_2).$$

To solve:

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + s^{-1}\tilde{F}_0(z\omega - \omega_2).$$

Recall: $x(\omega) = x(\omega - \omega_2)$.

To solve:

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + s^{-1}\tilde{F}_0(z\omega - \omega_2).$$

Recall: $x(\omega) = x(\omega - \omega_2)$. **Simplify equation:** Write $s = e^{2i\kappa}$ and define

$$A(\omega) = x(\omega) - \mathsf{T} + (1 - e^{-2i\kappa})\tilde{F}_0(\omega)$$

To solve:

$$A(\omega) = e^{-2i\kappa}A(\omega - \omega_2).$$

Other information $A(\omega) - x(\omega)$ has no poles in $\Omega_{-4}, \Omega_{-3}, \ldots, \Omega_0$.

To solve:

$$x(\omega) = \mathsf{T} - \tilde{F}_0(\omega) + s^{-1}\tilde{F}_0(z\omega - \omega_2).$$

Recall: $x(\omega) = x(\omega - \omega_2)$. **Simplify equation:** Write $s = e^{2i\kappa}$ and define

$$A(\omega) = x(\omega) - \mathsf{T} + (1 - e^{-2i\kappa})\tilde{F}_0(\omega)$$

To solve:

$$A(\omega) = e^{-2i\kappa}A(\omega - \omega_2).$$

Other information $A(\omega) - x(\omega)$ has no poles in $\Omega_{-4}, \Omega_{-3}, \ldots, \Omega_0$. Solution: Explicit in terms of the Jacobi theta function

$$A\left(\frac{\omega_1}{\pi}z-\frac{\gamma}{2}\right) = -x_c\frac{\vartheta(\delta-\alpha,\tau)\vartheta(\delta+\gamma+\alpha,\tau)}{\vartheta(\gamma+2\delta,\tau)\vartheta(\kappa,\tau)}\left(\frac{\vartheta(z+\gamma+\delta+\kappa,\tau)}{\vartheta(z+\gamma+\delta,\tau)} - e^{-2i\kappa}\frac{\vartheta(z-\delta+\kappa,\tau)}{\vartheta(z-\delta,\tau)}\right).$$

Part 4: Special cases

SIMPLE WALKS

SIMPLE WALKS

Kernel:

$$K(x, y; t) = 1 - t\left(x + y + \frac{1}{x} + \frac{1}{y}\right)$$

Parametrisation of Kernel curve:

$$X(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-\gamma,\tau)\vartheta(z+2\gamma,\tau)} \quad \text{and} \quad Y(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z+\gamma,\tau)\vartheta(z-2\gamma,\tau)},$$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)}=\frac{\sqrt{1+4t}-1}{2\sqrt{t}}.$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$

SIMPLE WALKS

Kernel:

$$K(x, y; t) = 1 - t\left(x + y + \frac{1}{x} + \frac{1}{y}\right)$$

Parametrisation of Kernel curve:

$$X(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-\gamma,\tau)\vartheta(z+2\gamma,\tau)} \quad \text{and} \quad Y(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z+\gamma,\tau)\vartheta(z-2\gamma,\tau)},$$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)} = \frac{\sqrt{1+4t}-1}{2\sqrt{t}}$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ Expression for excursions: (previously solved by [Budd, 2017])

$$\Xi(t, e^{2i\kappa}) = \frac{t^{-1}e^{i\gamma}}{e^{-2i\kappa} - 1} \frac{\vartheta(2\gamma)}{\vartheta(\kappa)} \left(2\frac{\vartheta(2\gamma+\kappa)}{\vartheta(2\gamma)} - \frac{e^{-2i\kappa}\vartheta(\gamma-\kappa) + \vartheta(\gamma+\kappa)}{\vartheta(\gamma)} \right).$$
$$= 1 + 3t^2 + 22t^4 + 211t^6 + (2308 + s + s^{-1})t^8 + \cdots$$

DIAGONAL WALKS

DIAGONAL WALKS

Parametrisation of Kernel curve:

$$\begin{split} X(z) &= ie^{-2i\gamma} \frac{\vartheta(z+\frac{\gamma}{2}+\frac{\pi}{4},\tau)\vartheta(z+\frac{\gamma}{2}-\frac{\pi}{4},\tau)}{\vartheta(z-\frac{3}{2}\gamma-\frac{\pi}{4},\tau)\vartheta(z+\frac{5}{2}\gamma+\frac{\pi}{4},\tau)},\\ Y(z) &= -ie^{-2i\gamma} \frac{\vartheta(z-\frac{\gamma}{2}+\frac{\pi}{4},\tau)\vartheta(z-\frac{\gamma}{2}-\frac{\pi}{4},\tau)}{\vartheta(z+\frac{3}{2}\gamma-\frac{\pi}{4},\tau)\vartheta(z-\frac{5}{2}\gamma+\frac{\pi}{4},\tau)}, \end{split}$$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)} = \frac{\sqrt{1+4t}-1}{2\sqrt{t}}$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ Expression for excursions: [Budd, 2017]

$$\mathsf{E}(t, e^{2i\kappa}) = \frac{-e^{2i\gamma}}{t(1 - e^{-2i\kappa})} \frac{\vartheta(2\gamma + \kappa, \tau)\vartheta(2\gamma - \frac{\pi}{2}, \tau) - \vartheta(2\gamma, \tau)\vartheta(2\gamma - \frac{\pi}{2} + \kappa, \tau)}{\vartheta(\frac{\pi}{2}, \tau)\vartheta(\kappa, \tau)}$$
$$= 1 + 4t^2 + \left(\frac{1}{s} + 34 + s\right)t^4 + \left(\frac{20}{s} + 360 + 20s\right)t^6 + \cdots$$

REVERSE KREWERAS WALKS

REVERSE KREWERAS WALKS

Parametrisation of Kernel curve:

$$\begin{split} X(z) &= e^{-\frac{2}{3}i\gamma} \frac{\vartheta(z+\frac{\gamma}{2},\tau)^2}{\vartheta(z-\frac{\gamma}{2},\tau)\vartheta(z+\frac{3}{2}\gamma,\tau)},\\ Y(z) &= e^{-\frac{2}{3}i\gamma} \frac{\vartheta(z-\frac{\gamma}{2},\tau)^2}{\vartheta(z+\frac{\gamma}{2},\tau)\vartheta(z-\frac{3}{2}\gamma,\tau)}, \end{split}$$

where $\gamma = \frac{\pi \tau}{6}$ and τ is determined by

$$-2e^{-\frac{2}{3}i\gamma}\frac{\vartheta(\frac{\gamma}{2},\tau)}{\vartheta(\frac{3}{2}\gamma,\tau)} + e^{\frac{4}{3}i\gamma}\frac{\vartheta(\frac{3\gamma}{2},\tau)^2}{\vartheta(\frac{1}{2}\gamma,\tau)^2} = \frac{1}{t}$$

So $q := e^{\frac{2i\gamma}{3}} = t + 5t^4 + 68t^7 + 1188t^{10} + \cdots$. Expression for excursions:

$$\mathsf{E}(t, e^{2i\kappa}) = e^{\frac{2}{3}i\gamma} \frac{\vartheta(\gamma+\kappa)\vartheta'(\gamma) - \vartheta(\gamma)\vartheta'(\gamma+\kappa) + e^{-2i\kappa}\vartheta(\gamma-\kappa)\vartheta'(\gamma) - e^{-2i\kappa}\vartheta(\gamma)\vartheta'(\gamma-\kappa)}{t(1-e^{-2i\kappa})\vartheta(\kappa,\tau)\vartheta'(0,\tau)}$$
$$= 1 + 4t^3 + 48t^6 + (s^{-1} + 770 + s)t^9 + \cdots$$

Counting lattice walks by winding angle

DOUBLE KREWERAS WALKS

DOUBLE KREWERAS WALKS

Parametrisation of Kernel curve:

$$\begin{split} X(z) &= e^{-2i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-2\gamma,\tau)\vartheta(z+3\gamma,\tau)},\\ Y(z) &= e^{-2i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z-3\gamma,\tau)\vartheta(z+2\gamma,\tau)}, \end{split}$$

where $\gamma = \frac{\pi \tau}{6}$ and τ is determined by

$$e^{-4i\gamma}rac{\vartheta(\gamma,\tau)^3}{\vartheta(3\gamma,\tau)^3} = rac{t}{1+2t},$$

So $q := e^{2i\gamma} = t + t^2 + 7t^3 + 23t^4 + 122t^5 + 554t^6 + \cdots$. Expression for excursions:

$$\mathsf{E}(t, e^{2i\kappa}) = -\frac{\left(2\vartheta\left(2\gamma\right)\vartheta\left(3\gamma+\kappa\right)-\vartheta\left(3\gamma\right)\vartheta\left(2\gamma+\kappa\right)-e^{-2i\kappa}\vartheta\left(3\gamma\right)\vartheta\left(2\gamma-\kappa\right)\right)e^{2i\gamma}}{t\left(1-e^{-2i\kappa}\right)\vartheta\left(\gamma\right)\vartheta\left(\kappa\right)}$$
$$= 1+5t^{2}+8t^{3}+62t^{4}+216t^{5}+(s^{-1}+1199+s)t^{6}+\cdots$$

Kernel:

$$K(x, y; t) = 1 - t\left(x + y + \frac{1}{x} + \frac{1}{y}\right)$$

Parametrisation of Kernel curve:

 $X(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-\gamma,\tau)\vartheta(z+2\gamma,\tau)} \quad \text{ and } \quad Y(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z+\gamma,\tau)\vartheta(z-2\gamma,\tau)},$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)} = \frac{\sqrt{1+4t}-1}{2\sqrt{t}}$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ Expression for excursions: (previously solved by [Budd, 2017])

$$\Xi(t, e^{2i\kappa}) = \frac{t^{-1}e^{i\gamma}}{e^{-2i\kappa} - 1} \frac{\vartheta(2\gamma)}{\vartheta(\kappa)} \left(2\frac{\vartheta(2\gamma + \kappa)}{\vartheta(2\gamma)} - \frac{e^{-2i\kappa}\vartheta(\gamma - \kappa) + \vartheta(\gamma + \kappa)}{\vartheta(\gamma)} \right).$$
$$= 1 + 3t^2 + 22t^4 + 211t^6 + (2308 + s + s^{-1})t^8 + \cdots$$

Kernel:

$$K(x, y; t) = 1 - t\left(x + y + \frac{1}{x} + \frac{1}{y}\right)$$

Parametrisation of Kernel curve:

$$X(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-\gamma,\tau)\vartheta(z+2\gamma,\tau)} \quad \text{and} \quad Y(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z+\gamma,\tau)\vartheta(z-2\gamma,\tau)},$$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)} = \frac{\sqrt{1+4t}-1}{2\sqrt{t}}$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ Unrestricted walks (x = y = 1): Let $\lambda = \frac{1 - 2t - \sqrt{1 - 4t}}{2t}$.

$$\mathsf{W}(1,1;t,e^{2i\kappa}) = \frac{e^{i\gamma}}{(1-4t)(\lambda+1)} \frac{\vartheta(2\gamma)}{\vartheta(\kappa)} \left(\frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)}{\lambda\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)} - e^{-2i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)} - e^{-i\kappa} \frac{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{5\gamma}{2} - \kappa)}} - e^{-i\kappa$$

Counting lattice walks by winding angle

Kernel:

$$K(x, y; t) = 1 - t\left(x + y + \frac{1}{x} + \frac{1}{y}\right)$$

Parametrisation of Kernel curve:

$$X(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z+\gamma,\tau)}{\vartheta(z-\gamma,\tau)\vartheta(z+2\gamma,\tau)} \quad \text{and} \quad Y(z) = e^{-i\gamma} \frac{\vartheta(z,\tau)\vartheta(z-\gamma,\tau)}{\vartheta(z+\gamma,\tau)\vartheta(z-2\gamma,\tau)},$$

where $\gamma = \frac{\pi \tau}{4}$ and τ is determined by

$$e^{-i\frac{\gamma}{2}}\frac{\vartheta\left(\frac{\gamma}{2},\tau\right)}{\vartheta\left(\frac{3\gamma}{2},\tau\right)} = \frac{\sqrt{1+4t}-1}{2\sqrt{t}}$$

So $q := e^{i\gamma} = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ Unrestricted walks (x = y = 1): Let $\lambda = \frac{1 - 2t - \sqrt{1 - 4t}}{2t}$.

$$\begin{split} \mathsf{W}(1,1;t,e^{2i\kappa}) &= \frac{e^{i\gamma}}{(1-4t)(\lambda+1)} \,\frac{\vartheta(2\gamma)}{\vartheta(\kappa)} \,\left(\frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)}{\lambda\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)} - e^{-2i\kappa} \frac{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} + \kappa)}{\vartheta(\frac{\pi}{2} + \frac{5\gamma}{2} - \kappa)} \right) \\ &- e^{-2i\kappa} \lambda \frac{\vartheta(\frac{\pi}{2} - \frac{\gamma}{2} + \kappa)}{\vartheta(\frac{\pi}{2} - \frac{\gamma}{2} - \kappa)} + \frac{\vartheta(\frac{\pi}{2} - \frac{\gamma}{2} - \kappa)}{\vartheta(\frac{\pi}{2} - \frac{\gamma}{2} - \kappa)} \right). \end{split}$$

SIMPLE WALKS: WINDING ANGLE DISTRIBUTION

Corollary (excursions): Let E_n be a random variable given by the winding angle θ of a random excursion of length 2n**Theorem:** $\frac{\pi E_n}{\log(n)}$ converges to a random variable *E* with density

$$f_E(x) = \frac{(x-1)e^x + (x+1)e^{-x}}{(e^x - e^{-x})^3}.$$

Corollary (unrestricted walks): Let W_n be a random variable given by the winding angle θ of a random *walk* of length *n* **Theorem:** $\frac{\pi W_n}{\log(n)}$ converges to a random variable *W* with density

$$f_W(x) = rac{2}{(e^x + e^{-x})^2}.$$

Recall: Affected by (0,0) being forbidden - this makes random walks stay away from (0,0) and not wind as much.

FURTHER PROBLEMS

• Same principle for other models e.g., brownian motion on non-convex cones (See [Fayolle,Franceschi,Raschel,2023])

FURTHER PROBLEMS

- Same principle for other models e.g., brownian motion on non-convex cones (See [Fayolle,Franceschi,Raschel,2023])
- Walks by winding angle with larger steps?

FURTHER PROBLEMS

- Same principle for other models e.g., brownian motion on non-convex cones (See [Fayolle,Franceschi,Raschel,2023])
- Walks by winding angle with larger steps?
- Walks winding around multiple points: What's a good model?

Counting lattice walks by winding angle

Counting lattice walks by winding angle

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then

$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_+(x)$ is meromorphic on:

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then

$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_+(x)$ is meromorphic on:

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then

$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_+(x)$ is meromorphic on:

Counting lattice walks by winding angle

Counting lattice walks by winding angle

Counting lattice walks by winding angle

Counting lattice walks by winding angle

By symmetry, for $r \in \mathbb{R}$:

•
$$X(r) = X(\pi - r) = X(-r)$$

• $X(\frac{\pi\tau}{2} + r) = X(\frac{\pi\tau}{2} - r)$

For $z \in \mathbb{C}$:

For $z \in \mathbb{C}$: • $X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$ • $X(z) = X(\pi \tau - z)$

Counting lattice walks by winding angle

For
$$z \in \mathbb{C}$$
:
• $X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$
 $X(z) = c \frac{\vartheta(z - \alpha)\vartheta(z + \alpha)}{\vartheta(z - \beta)\vartheta(z + \beta)}$

Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). By symmetry, for $r \in \mathbb{R}$:

•
$$X(r) = X(-r)$$
, so $Y(r) + Y(-r) = -\frac{B(X(r))}{A(X(r))}$.
• Similarly, $Y\left(\frac{\pi\tau}{2} + r\right) + Y\left(\frac{\pi\tau}{2} - r\right) = -\frac{B\left(X\left(\frac{\pi\tau}{2} + r\right)\right)}{A\left(X\left(\frac{\pi\tau}{2} + r\right)\right)}$

Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). For $z \in \mathbb{C}$: • $Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$. • $Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}$.

For $z \in \mathbb{C}$: • $Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$. • $Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}$. So $Y(z) = Y(z + \pi\tau) = Y(z + \pi)$ $\Rightarrow Y(z) = c \frac{\vartheta(z - \gamma)\vartheta(z - \delta)}{\vartheta(z - \epsilon)\vartheta(z - \gamma - \delta + \epsilon)}$.

Part 5: Relation to walks in cones

Counting lattice walks by winding angle

WALKS WITH SMALL STEPS IN THE QUARTER PLANE

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n}$ of paths in the positive quadrant with steps in *S* from (1, 1) to (i, j) of length *n*. **Equivalently:** Determine the generating function

WALKS WITH SMALL STEPS IN THE QUARTER PLANE

The model: Choose a step set $S \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. **Problem:** Determine the number $q_{i,j,n}$ of paths in the positive quadrant with steps in *S* from (1, 1) to (i, j) of length *n*. **Equivalently:** Determine the generating function

$$\mathsf{Q}(x,y;t) := \sum_{n \ge 0} \sum_{i,j \ge 1} q_{i,j,n} t^n x^i y^j.$$

Systematic approach: 79 distinct non-trivial step sets identified [Bousquet-Mélou, Mishna, 2010].

All models now classified using many methods

- Algebraic methods [Malyshev, Bousquet-Mélou, Mishna]
- Asymptotic analyses [Denisov, Wachtel, Mishna, Rechnitzer]
- Computer algebra [Bostan, Chyzak, Van Hoeij, Kauers, Pech]
- Galois Theory [Dreyfus, Hardouin, Roques, Singer]
- Analytic approach [Fayolle, Raschel, Kurkova, Bernardi]

QUADRANT WALKS

In total: 79 different non-trivial step sets S.

Generating function Q(x, y; t) is...

Algebraic in 4 cases:
D-finite in 19 further cases:
Algebraic in 4 cases:
Algebraic in 4

• D-algebraic in 9 further cases:

• In remaining 47 cases, Q(x, y; t) is not D-algebraic. [Bousquet-Mélou, Mishna, Denisov, Wachtel, Rechnitzer, Bostan, Chyzak, Van Hoeij, Kauers, Pech, Dreyfus, Hardouin, Roques, Singer, Fayolle, Raschel, Kurkova, Bernardi]

QUADRANT WALKS

In total: 79 different non-trivial step sets S.

Generating function Q(x, y; t) is...

• In remaining 47 cases, Q(x, y; t) is not D-algebraic. [E.P., 2022]: Same nature (in *x*) for 3/4-plane walks.
Walks by winding \rightarrow walks in cones

Concrete relation: The generating function for quadrant walks using any of the following step sets

┥*╈*╺╱ӂҲ┿┥ҳ

can be derived from expressions for walks by winding angle using the reflection principal.

Walks by winding \rightarrow walks in cones

Concrete relation: The generating function for quadrant walks using any of the following step sets

can be derived from expressions for walks by winding angle using the reflection principal.

Question: Is there an *interesting* classification of step sets for walks by winding angle, analogous to that of walks in cones?

Difficulty: W(x, y; t, s) itself is always D-algebraic but never D-finite.

Equation characterising $Q(x, y) \equiv Q(t, x, y)$ for quadrant walks:

$$K(x, y)Q(x, y) + R(x, y) = 0.$$

K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

where the constants satisfy $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2. So, R(X(z), Y(z)) = 0.

In general: K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for $j = 1, 2$.

Andrew Elvey Price

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2. • K(0, 0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2. • K(0, 0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

• So
$$3\beta_1 = \pi \tau$$
.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z - \frac{2\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

• So
$$3\beta_1 = \pi \tau$$
.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as x → 0, we have y(x) ~ −x or y(x) ~ −¹/_{x²}, so Y(z) has a double pole at z = β₁.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z-\frac{\pi\tau}{3}\right)}{\vartheta\left(z+\frac{\pi\tau}{3}\right)\vartheta\left(z-\frac{2\pi\tau}{3}\right)} \text{ and } Y(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z+\frac{\pi\tau}{3}\right)}{\vartheta\left(z-\frac{\pi\tau}{3}\right)\left(z+\frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

• So
$$3\beta_1 = \pi \tau$$
.

BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \text{ and } Y(z) = X(z+\pi\tau),$$

where

$$t = \frac{1}{X(z)Y(z) + X(z)^{-1} + Y(z)^{-1}}$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \text{ and } Y(z) = X(z+\pi\tau),$$

where

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$