
Counting lattice walks by winding angle

Andrew Elvey Price

CNRS, Université de Tours

April, 2025

Counting lattice walks by winding angle Andrew Elvey Price



LATTICE WALKS BY WINDING ANGLE

Counting lattice walks by winding angle Andrew Elvey Price



TALK OUTLINE

Part 1: Introduction to winding
Part 2: Functional equations
Part 3: Solution to functional equations

Conversion to analytic functional equation à la petit livre jaune
Solution to analytic functional equation

Part 4: Some nice special cases

Counting lattice walks by winding angle Andrew Elvey Price



Part 1: Introduction to winding

θ
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HISTORY OF WINDING

[Spitzer, 1958]: The winding θt of two-dimensional Brownian motion
at time t behaves like

lim
t→∞

p
(

x =
2θt

log(t)

)
=

1
π

1
1 + x2 .

[Pitman, Yor, 1986]: For the same model, the part θ̃t of the winding
that happens outside some disk around behaves like

lim
t→∞

p

(
x =

2θ̃t

log(t)

)
=

1
e
πx
2 + e−

πx
2
.

[Bélisle, 1989]: Winding of a random walk has same behaviour
[Rudnick, Hu, 1987]: Winding θ̂t of brownian motion conditioned to
avoid a disk around behaves like

lim
t→∞

p

(
x =

2θ̂t

log(t)

)
=

π(
e
πx
2 + e−

πx
2

)2 .

Claim: Same behaviour for our models
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Not realistic: dog can’t go indefinitely close to legs
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PREVIOUS EXACT RESULTS

[Timothy Budd, 2017]: Solved for step-sets�	
@I
@R
��

starting and ending

on an axis (equivalently
�
?
6-

starting and ending on a diagonal)

[E.P., 2020 (FPSAC)]: Solved for
�
?
6-

,�	
@I
@R
��

,�	
�@I
?
6
@R
-��

,�	
6-

,�	
�
?
6-��

.

This work: Solution for any step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
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WALKS WITH SMALL STEPS BY WINDING ANGLE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n,θ of paths in Z2 avoiding (0, 0)
with steps in S from (1, 0) to (i, j) of length n and winding angle θ.

θ
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WALKS WITH SMALL STEPS BY WINDING ANGLE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n,θ of paths in Z2 avoiding (0, 0)
with steps in S from (1, 0) to (i, j) of length n and winding angle θ.
Equivalently: count walks starting at by length and end point.
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WALKS WITH SMALL STEPS BY WINDING ANGLE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n,θ of paths in Z2 avoiding (0, 0)
with steps in S from (1, 0) to (i, j) of length n and winding angle θ.
Equivalently: Determine the generating function

W(x, y; t, s) :=
∑
i,j,n,θ

qi,j,n,θxiyjtnsb
θ

2πc.

ss−1

θ
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WALKS WITH SMALL STEPS BY WINDING ANGLE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n,θ of paths in Z2 avoiding (0, 0)
with steps in S from (1, 0) to (i, j) of length n and winding angle θ.
Equivalently: Determine the generating function

W(x, y; t, s) :=
∑
i,j,n,θ

qi,j,n,θxiyjtnsb
θ

2πc.

Equivalent because: θ can be recovered from monomial using

θ = 2π
⌊
θ

2π

⌋
+ Arg(x + iy)

where we define Arg(z) ∈ [0, 2π).
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PREVIEW: DOUBLE KREWERAS EXCURSIONS

×s ×s−1
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PREVIEW: DOUBLE KREWERAS EXCURSIONS

Define

T(u, q) =

∞∑
n=0

(−1)nqn(n+1)/2(un+1 − u−n), .

Let q := e2iγ = t + t2 + 7t3 + 23t4 + 122t5 + 554t6 + · · · be the
unique series satisfying

q
T(q, q6)3

T(q3, q6)3 =
t

1 + 2t
.

The generating function E(t, s) for double kreweras excursions
(1, 0)→ (1, 0) is given by

E(t, s) =

(
T
(
q3, q6) T

(
q2s, q6)− 2 T

(
q3s, q6) T

(
q2, q6)+ T

(
q3, q6) T

(
q2

s , q
6
))

tq(1 − s−1)T (q, q6) T (s, q6)

= 1 + 5t2 + 8t3 + 62t4 + 216t5 + (s−1 + 1199 + s)t6 + · · ·
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PREVIEW: DOUBLE KREWERAS EXCURSIONS (USING ϑ)

Define the Jacobi theta function

ϑ(z, τ) :=

∞∑
n=0

(−1)neiπτ(n+ 1
2 )

2
(

e(2n+1)iz − e−(2n+1)iz
)

= −ie
iπτ

4 e−izT(e2iz, e2iπτ ).

Let γ = πτ
6 and τ be determined by

e−4iγ ϑ(γ, τ)3

ϑ(3γ, τ)3 =
t

1 + 2t
,

The generating function E(t, s) for double kreweras excursions
(1, 0)→ (1, 0) is given by

E(t, e2iκ) = −
(
2ϑ (2 γ)ϑ (3 γ + κ)− ϑ (3 γ)ϑ (2 γ + κ)− e−2iκϑ (3 γ)ϑ (2 γ − κ)

)
e2i γ

t (1 − e−2iκ)ϑ (γ)ϑ (κ)

= 1 + 5t2 + 8t3 + 62t4 + 216t5 + (s−1 + 1199 + s)t6 + · · ·
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Part 2: Functional equations for
walks by winding number
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FUNCTIONAL EQUATIONS

Some refined walk types and generating functions
Terminating walk, T(t, s): walk ending at (0, 0)

Rising walk, R(x; t, s): final step moves up through dotted line
Sinking walk, 1

y S(x; t, s): final step moves down through dotted
line

×s ×s−1
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Sinking walk, 1
y S(x; t, s): final step moves down through dotted

line

×s ×s−1
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FUNCTIONAL EQUATIONS

Some refined walk types and generating functions
Terminating walk, T(t, s): walk ending at (0, 0)
Rising walk, R(x; t, s): final step moves up through dotted line
Sinking walk, 1

y S(x; t, s): final step moves down through dotted
line

No winding factor:

(Walk + step) or empty walk = walk or Terminating walk
W(x, y; t, 1)tP(x, y) + x = W(x, y; t, 1) + T(t, s).
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FUNCTIONAL EQUATIONS

Some refined walk types and generating functions
Terminating walk, T(t, s): walk ending at (0, 0)
Rising walk, R(x; t, s): final step moves up through dotted line
Sinking walk, 1

y S(x; t, s): final step moves down through dotted
line

No winding factor:

(Walk + step) or empty walk = walk or Terminating walk
W(x, y; t, 1)tP(x, y) + x = W(x, y; t, 1) + T(t, s).

With winding factor correction:

W(x, y)tP(x, y) + x = W(x, y) + T +

(
1
s
− 1
)

R(x) + (s− 1)
1
y

S(x)
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FUNCTIONAL EQUATIONS

Some refined walk types and generating functions
Terminating walk, T(t, s): walk ending at (0, 0)
Rising walk, R(x; t, s): final step moves up through dotted line
Sinking walk, 1

y S(x; t, s): final step moves down through dotted
line

No winding factor:

(Walk + step) or empty walk = walk or Terminating walk
W(x, y; t, 1)tP(x, y) + x = W(x, y; t, 1) + T(t, s).

With winding factor correction:

W(x, y)tP(x, y) + x = W(x, y) + T +

(
1
s
− 1
)

R(x) + (s− 1)
1
y

S(x)

Uniquely defines series (along with relation coming from definition of
R and S) but hard to analyse directly
Before analysis: Refine functional equation
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QUADRANT-LIKE FUNCTIONAL EQUATIONS

Refinement: Write

W(x, y; t, s) = Q0(x, y; t, s)+Q1(x, y; t, s)+Q2(x, y; t, s)+Q3(x, y; t, s),

where each Qj counts walks ending in a specific quadrant Qj.

Equation for Q0(x, y; t, s):

Q0(x, y)tP(x, y)+x = Q0(x, y)+T0−R(x)+sy−1S(x)+R1(y)−xS1(y)

Q0Q1

Q2
Q3

F0 = R− S

F1 = R1 − S1
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QUADRANT-LIKE FUNCTIONAL EQUATIONS

Refinement: Write

W(x, y; t, s) = Q0(x, y; t, s)+Q1(x, y; t, s)+Q2(x, y; t, s)+Q3(x, y; t, s),

where each Qj counts walks ending in a specific quadrant Qj.
Equation for Q0(x, y; t, s):

Q0(x, y)tP(x, y)+x = Q0(x, y)+T0−R(x)+sy−1S(x)+R1(y)−xS1(y)

F0 = R− S

F1 = R1 − S1 Q0Q1

Q2
Q3

R S

R1

S1
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QUADRANT-LIKE FUNCTIONAL EQUATIONS

Refinement: Write

W(x, y; t, s) = Q0(x, y; t, s)+Q1(x, y; t, s)+Q2(x, y; t, s)+Q3(x, y; t, s),

where each Qj counts walks ending in a specific quadrant Qj.
Equation for Q0(x, y; t, s):

Q0(x, y)tP(x, y) + x = Q0(x, y) + T0 − F0(x, y) + F1(x, y)
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QUADRANT-LIKE FUNCTIONAL EQUATIONS

Refinement: Write

W(x, y; t, s) = Q0(x, y; t, s)+Q1(x, y; t, s)+Q2(x, y; t, s)+Q3(x, y; t, s),

where each Qj counts walks ending in a specific quadrant Qj.
Equations defining Qj(x, y; t, s) for j = 0, 1, 2, 3:

Q0(x, y)tP(x, y) + x = Q0(x, y) + T0 − F0(x, y) + F1(x, y)

Q1(x, y)tP(x, y) = Q1(x, y) + T1 − F1(x, y) + F2(x, y)

Q2(x, y)tP(x, y) = Q2(x, y) + T2 − F2(x, y) + F3(x, y)

Q3(x, y)tP(x, y) = Q3(x, y) + T3 − F3(x, y) + F4(x, y)

F4(x, y) = s−1F0(x, y)
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QUADRANT-LIKE FUNCTIONAL EQUATIONS

Refinement: Write

W(x, y; t, s) = Q0(x, y; t, s)+Q1(x, y; t, s)+Q2(x, y; t, s)+Q3(x, y; t, s),

where each Qj counts walks ending in a specific quadrant Qj.
Equations defining Qj(x, y; t, s) for j = 0, 1, 2, 3:

Q0(x, y)tP(x, y) + x = Q0(x, y) + T0 − F0(x, y) + F1(x, y)

Q1(x, y)tP(x, y) = Q1(x, y) + T1 − F1(x, y) + F2(x, y)

Q2(x, y)tP(x, y) = Q2(x, y) + T2 − F2(x, y) + F3(x, y)

Q3(x, y)tP(x, y) = Q3(x, y) + T3 − F3(x, y) + F4(x, y)

F4(x, y) = s−1F0(x, y)

To simplify, write K(x, y; t) = 1− tP(x, y).
To solve:

δ0,jx = K(x, y; t)Qj(x, y) + Tj − Fj(x, y) + Fj+1(x, y),

F4(x, y) = s−1F0(x, y).
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Part 3: Solving functional equation
via analytic functional equation

à la petit petit livre jaune
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SOLVING FUNCTIONAL EQUATIONS

To solve:

δ0,jx = K(x, y; t)Qj(x, y) + Tj − Fj(x, y) + Fj+1(x, y),

F4(x, y) = s−1F0(x, y).

Solution idea: Based on methods used for quadrant walks [Fayolle,
Ianogorodski, 1979], [Fayolle, Ianogorodski, Malyshev, 1999],
[Raschel, 2010], similarly to [EP, 2022] for 3/4-plane walks

Step 1:
Fix t < 1/9 and parametrise Et = {(x, y) : K(x, y; t) = 0}:

x(ω) = x0 +
x1

℘(ω;ω1, ω2) + x2
,

y(ω) = y0 +
y1

℘(ω − ω3/2;ω1, ω2) + y2
,

Et = {(x(ω), y(ω)) : ω ∈ C}.
Inherited transformation properties: x(ω) and y(ω) satisfy

x(ω) = x(ω + ω1) = x(ω + ω2) = x(−ω)
y(ω) = y(ω + ω1) = y(ω + ω2) = y(ω3 − ω)

Step 2: Substitute x→ x(ω) and y→ y(ω) in functional equations
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FUNCTIONAL EQUATIONS: ALGEBRAIC→ ANALYTIC

Warm up: Consider just the first equation for t < 1/9 and |s| = 1.

x = K(x, y)Q0(x, y) + T0 − F0(x, y) + F1(x, y)

Powers of x, y positive⇒ Converges when |x|, |y| < 1.
to substitute x→ x(ω) and y→ y(ω), need to understand when
|x(ω)| < 1 and |y(ω)| < 1.

Q0Q1

Q2
Q3

R S

R1

S1

F0 = R− S

F1 = R1 − S1
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THE FUNCTIONS x(ω) AND y(ω) FOR ω ∈ C/(ω1Z)

Ω0 Ω1 Ω2 Ω3 Ω4Ω−1Ω−2Ω−3Ω−4

ω1

ω3
20ω3−ω2

2−ω2
2

ω2ω3−2ω2
2

ω3+ω2
2

ω2
2

|x(ω)| < 1|x(ω)| > 1

|y(ω)| > 1|y(ω)| < 1

|x(ω)| < 1

|y(ω)| > 1

|x(ω)| > 1

|y(ω)| < 1

For ω ∈ Ω0: |x(ω)|, |y(ω)| < 1, so Q0(x(ω), y(ω)) converges.

Counting lattice walks by winding angle Andrew Elvey Price



FUNCTIONAL EQUATIONS: ALGEBRAIC→ ANALYTIC

Warm up: Consider just the first equation for t < 1/9 and |s| = 1:

x = K(x, y)Q0(x, y) + T0 − F0(x, y) + F1(x, y)

Powers of x, y positive⇒ Converges when |x|, |y| < 1.
Recall:
F0(x, y; t, s) ∈ Z[[x, t, s]] + 1

yZ[[x, t, s]]⇒ Converges when |x| < 1
F1(x, y; t, s) ∈ Z[[y, t, s]] + xZ[[y, t, s]]⇒ Converges when |y| < 1
Define:

F̃0(ω) = F0(x(ω), y(ω)), for ω ∈ Ω−1 ∪ Ω0,

F̃1(ω) = F1(x(ω), y(ω)), for ω ∈ Ω0 ∪ Ω1.

Substitute x→ x(ω) and y→ y(ω) for ω ∈ Ω0:

x(ω) = T0 − F̃0(ω) + F̃1(ω).
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FUNCTIONAL EQUATIONS: ALGEBRAIC→ ANALYTIC

General version: Consider all equations for t < 1/9 and |s| = 1:

δ0,jx = K(x, y; t)Qj(x, y) + Tj − Fj(x, y) + Fj+1(x, y),

sF4(x, y) = F0(x, y).

Define:

F̃0(ω) = F0(x(ω), y(ω)), for ω ∈ Ω−1 ∪ Ω0,

F̃1(ω) = F1(x(ω), y(ω)), for z ∈ Ω0 ∪ Ω1,

F̃2(ω) = F2(x(ω), y(ω)), for z ∈ Ω1 ∪ Ω2,

F̃3(ω) = F3(x(ω), y(ω)), for z ∈ Ω2 ∪ Ω3,

F̃4(ω) = F4(x(ω), y(ω)), for z ∈ Ω3 ∪ Ω4.

Substitute x→ x(ω) and y→ y(ω) for ω ∈ Ωj for j = 0, 1, 2, 3:

δ0,jx(ω) = Tj − F̃j(ω) + F̃j+1(ω).

Final equation: for ω ∈ Ω0, ω+ω2 ∈ Ω4 and x(ω) = x(ω+ω2) and
y(ω) = y(ω + ω2), so

F̃0(ω) = F0(x(ω), y(ω)) = sF4(x(ω), y(ω)) = sF̃4(ω + ω2).
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FUNCTIONAL EQUATIONS: ALGEBRAIC→ ANALYTIC

General version: Consider all equations for t < 1/9 and |s| = 1:

δ0,jx = K(x, y; t)Qj(x, y) + Tj − Fj(x, y) + Fj+1(x, y),

sF4(x, y) = F0(x, y).

Define:

F̃j(ω) = Fj(x(ω), y(ω)), for z ∈ Ωj−1 ∪ Ωj

Substitute x→ x(ω) and y→ y(ω) for ω ∈ Ωj for j = 0, 1, 2, 3:

δ0,jx(ω) = Tj − F̃j(ω) + F̃j+1(ω).

Final equation: for ω ∈ Ω0, ω+ω2 ∈ Ω4 and x(ω) = x(ω+ω2) and
y(ω) = y(ω + ω2), so

F̃0(ω) = F0(x(ω), y(ω)) = sF4(x(ω), y(ω)) = sF̃4(ω + ω2).
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Final equation: for ω ∈ Ω0, ω+ω2 ∈ Ω4 and x(ω) = x(ω+ω2) and
y(ω) = y(ω + ω2), so

F̃0(ω) = F0(x(ω), y(ω)) = sF4(x(ω), y(ω)) = sF̃4(ω + ω2).

Take analytic extensions to ω ∈ C and add up equations:
To solve:

x(ω) = T− F̃0(ω) + F̃4(ω).
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FUNCTIONAL EQUATIONS: ALGEBRAIC→ ANALYTIC

General version: Consider all equations for t < 1/9 and |s| = 1:

δ0,jx = K(x, y; t)Qj(x, y) + Tj − Fj(x, y) + Fj+1(x, y),

sF4(x, y) = F0(x, y).
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Final equation: for ω ∈ Ω0, ω+ω2 ∈ Ω4 and x(ω) = x(ω+ω2) and
y(ω) = y(ω + ω2), so

F̃0(ω) = F0(x(ω), y(ω)) = sF4(x(ω), y(ω)) = sF̃4(ω + ω2).

Take analytic extensions to ω ∈ C and add up equations:
To solve:

x(ω) = T− F̃0(ω) + s−1F̃0(ω − ω2).
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ANALYTIC FUNCTIONAL EQUATIONS SOLUTION

To solve:
x(ω) = T− F̃0(ω) + s−1F̃0(zω − ω2).

Recall: x(ω) = x(ω − ω2).
Simplify equation: Write s = e2iκ and define

A(ω) = x(ω)− T + (1− e−2iκ)F̃0(ω)

To solve:
A(ω) = e−2iκA(ω − ω2).

Other information A(ω)− x(ω) has no poles in Ω−4,Ω−3, . . . ,Ω0.
Solution: Explicit in terms of the Jacobi theta function

A
(
ω1

π
z −

γ

2

)
= −xc

ϑ(δ − α, τ)ϑ(δ + γ + α, τ)

ϑ(γ + 2δ, τ)ϑ(κ, τ)

(
ϑ(z + γ + δ + κ, τ)

ϑ(z + γ + δ, τ)
− e−2iκ ϑ(z − δ + κ, τ)

ϑ(z − δ, τ)

)
.
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Part 4: Special cases
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SIMPLE WALKS

×s ×s−1
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SIMPLE WALKS

Kernel:
K(x, y; t) = 1− t

(
x + y +

1
x

+
1
y

)
Parametrisation of Kernel curve:
X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z − γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z − γ, τ)

ϑ(z + γ, τ)ϑ(z − 2γ, τ)
,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
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SIMPLE WALKS

Kernel:
K(x, y; t) = 1− t

(
x + y +

1
x

+
1
y

)
Parametrisation of Kernel curve:
X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z − γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z − γ, τ)

ϑ(z + γ, τ)ϑ(z − 2γ, τ)
,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
Expression for excursions: (previously solved by [Budd, 2017])

E(t, e2iκ) =
t−1eiγ

e−2iκ − 1
ϑ(2γ)
ϑ(κ)

(
2
ϑ(2γ + κ)

ϑ(2γ)
− e−2iκϑ(γ − κ) + ϑ(γ + κ)

ϑ(γ)

)
.

= 1 + 3t2 + 22t4 + 211t6 + (2308 + s + s−1)t8 + · · ·
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DIAGONAL WALKS

×s ×s−1
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DIAGONAL WALKS

Parametrisation of Kernel curve:

X(z) = ie−2iγ ϑ(z + γ
2 + π

4 , τ)ϑ(z + γ
2 −

π
4 , τ)

ϑ(z− 3
2γ −

π
4 , τ)ϑ(z + 5

2γ + π
4 , τ)

,

Y(z) = −ie−2iγ ϑ(z− γ
2 + π

4 , τ)ϑ(z− γ
2 −

π
4 , τ)

ϑ(z + 3
2γ −

π
4 , τ)ϑ(z− 5

2γ + π
4 , τ)

,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
Expression for excursions: [Budd, 2017]

E(t, e2iκ) =
−e2iγ

t(1 − e−2iκ)

ϑ(2γ + κ, τ)ϑ(2γ − π
2 , τ)− ϑ(2γ, τ)ϑ(2γ − π

2 + κ, τ)

ϑ(π2 , τ)ϑ(κ, τ)

= 1 + 4t2 +

(
1
s
+ 34 + s

)
t4 +

(
20
s

+ 360 + 20s
)

t6 + · · · · · ·
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REVERSE KREWERAS WALKS

×s ×s−1
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REVERSE KREWERAS WALKS

Parametrisation of Kernel curve:

X(z) = e−
2
3 iγ ϑ(z + γ

2 , τ)2

ϑ(z− γ
2 , τ)ϑ(z + 3

2γ, τ)
,

Y(z) = e−
2
3 iγ ϑ(z− γ

2 , τ)2

ϑ(z + γ
2 , τ)ϑ(z− 3

2γ, τ)
,

where γ = πτ
6 and τ is determined by

−2e−
2
3 iγ ϑ(γ2 , τ)

ϑ(3
2γ, τ)

+ e
4
3 iγ ϑ(3γ

2 , τ)2

ϑ(1
2γ, τ)2

=
1
t
.

So q := e
2iγ
3 = t + 5t4 + 68t7 + 1188t10 + · · · .

Expression for excursions:

E(t, e2iκ
) = e

2
3 iγ ϑ(γ + κ)ϑ′(γ) − ϑ(γ)ϑ′(γ + κ) + e−2iκϑ(γ − κ)ϑ′(γ) − e−2iκϑ(γ)ϑ′(γ − κ)

t(1 − e−2iκ)ϑ(κ, τ)ϑ′(0, τ)

= 1 + 4t3 + 48t6 + (s−1
+ 770 + s)t9 + · · ·
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DOUBLE KREWERAS WALKS

×s ×s−1
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DOUBLE KREWERAS WALKS

Parametrisation of Kernel curve:

X(z) = e−2iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z− 2γ, τ)ϑ(z + 3γ, τ)
,

Y(z) = e−2iγ ϑ(z, τ)ϑ(z− γ, τ)

ϑ(z− 3γ, τ)ϑ(z + 2γ, τ)
,

where γ = πτ
6 and τ is determined by

e−4iγ ϑ(γ, τ)3

ϑ(3γ, τ)3 =
t

1 + 2t
,

So q := e2iγ = t + t2 + 7t3 + 23t4 + 122t5 + 554t6 + · · · .
Expression for excursions:

E(t, e2iκ) = −
(
2ϑ (2 γ)ϑ (3 γ + κ)− ϑ (3 γ)ϑ (2 γ + κ)− e−2iκϑ (3 γ)ϑ (2 γ − κ)

)
e2i γ

t (1 − e−2iκ)ϑ (γ)ϑ (κ)

= 1 + 5t2 + 8t3 + 62t4 + 216t5 + (s−1 + 1199 + s)t6 + · · ·
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SIMPLE WALKS AGAIN

×s ×s−1
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SIMPLE WALKS AGAIN

Kernel:
K(x, y; t) = 1− t

(
x + y +

1
x

+
1
y

)
Parametrisation of Kernel curve:
X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z − γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z − γ, τ)

ϑ(z + γ, τ)ϑ(z − 2γ, τ)
,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
Expression for excursions: (previously solved by [Budd, 2017])

E(t, e2iκ) =
t−1eiγ

e−2iκ − 1
ϑ(2γ)
ϑ(κ)

(
2
ϑ(2γ + κ)

ϑ(2γ)
− e−2iκϑ(γ − κ) + ϑ(γ + κ)

ϑ(γ)

)
.

= 1 + 3t2 + 22t4 + 211t6 + (2308 + s + s−1)t8 + · · ·
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SIMPLE WALKS AGAIN

Kernel:
K(x, y; t) = 1− t

(
x + y +

1
x

+
1
y

)
Parametrisation of Kernel curve:
X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z − γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z − γ, τ)

ϑ(z + γ, τ)ϑ(z − 2γ, τ)
,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
Unrestricted walks (x = y = 1): Let λ = 1−2t−

√
1−4t

2t .

W(1, 1; t, e2iκ) =
eiγ

(1 − 4t)(λ+ 1)
ϑ(2γ)
ϑ(κ)

(
ϑ(π2 + 5γ

2 + κ)

λϑ(π2 + 5γ
2 + κ)

− e−2iκ ϑ(
π
2 + 5γ

2 + κ)

ϑ(π2 + 5γ
2 − κ)

− e−2iκλ
ϑ(π2 − γ

2 + κ)

ϑ(π2 − γ
2 − κ)

+
ϑ(π2 − γ

2 − κ)

ϑ(π2 − γ
2 − κ)

)
.

= 1 + (2 + s−1)t + (8 + 4s−1)t2 + · · ·
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SIMPLE WALKS AGAIN

Kernel:
K(x, y; t) = 1− t

(
x + y +

1
x

+
1
y

)
Parametrisation of Kernel curve:
X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z − γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z − γ, τ)

ϑ(z + γ, τ)ϑ(z − 2γ, τ)
,

where γ = πτ
4 and τ is determined by

e−i γ2
ϑ
(γ

2 , τ
)

ϑ
(

3γ
2 , τ

) =

√
1 + 4t − 1

2
√

t
.

So q := eiγ = t + 4t3 + 34t5 + 360t7 + · · ·
Unrestricted walks (x = y = 1): Let λ = 1−2t−

√
1−4t

2t .

W(1, 1; t, e2iκ
) =

eiγ

(1 − 4t)(λ + 1)

ϑ(2γ)

ϑ(κ)

(
ϑ(π

2 + 5γ
2 + κ)

λϑ(π
2 + 5γ

2 + κ)
− e−2iκ ϑ(

π
2 + 5γ

2 + κ)

ϑ(π
2 + 5γ

2 − κ)

−e−2iκ
λ
ϑ(π

2 − γ
2 + κ)

ϑ(π
2 − γ

2 − κ)
+
ϑ(π

2 − γ
2 − κ)

ϑ(π
2 − γ

2 − κ)

)
.
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SIMPLE WALKS: WINDING ANGLE DISTRIBUTION

Corollary (excursions): Let En be a random variable given by the
winding angle θ of a random excursion of length 2n
Theorem: πEn

log(n) converges to a random variable E with density

fE(x) =
(x− 1)ex + (x + 1)e−x

(ex − e−x)3 .

Corollary (unrestricted walks): Let Wn be a random variable given
by the winding angle θ of a random walk of length n
Theorem: πWn

log(n) converges to a random variable W with density

fW(x) =
2

(ex + e−x)2 .

Recall: Affected by (0, 0) being forbidden - this makes random walks
stay away from (0, 0) and not wind as much.

Counting lattice walks by winding angle Andrew Elvey Price



FURTHER PROBLEMS

Same principle for other models e.g., brownian motion on
non-convex cones (See [Fayolle,Franceschi,Raschel,2023])

Walks by winding angle with larger steps?

Walks winding around multiple points: What’s a good model?
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Write K(x, y) = A(x)y2 + B(x)y + C(x), then

Y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)

parameterizes K(x,Y(x)) = 0. Typically, Y+(x) is meromorphic on:

x3x1

0

πτ
2

π

π+ πτ
2

X(z)

x2 x4
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0
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By symmetry, for r ∈ R:
X(r) = X(π − r) = X(−r)
X(πτ2 + r) = X(πτ2 − r)
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For z ∈ C:
X(z) = X(π − z) = X(−z) = X(πτ + z)

X(z) = c
ϑ(z− α)ϑ(z + α)

ϑ(z− β)ϑ(z + β)
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Recall:

y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
.

Consider Y(z) = y(X(z)). By symmetry, for r ∈ R:
X(r) = X(−r), so Y(r) + Y(−r) = −B(X(r))

A(X(r)) .

Similarly, Y
(πτ

2
+ r
)

+ Y
(πτ

2
− r
)

= −
B
(
X
(
πτ
2 + r

))
A
(
X
(
πτ
2 + r

)) .
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Recall:

y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
.

Consider Y(z) = y(X(z)). For z ∈ C:
Y(z) + Y(−z) = −B(X(z))

A(X(z)) .

Y (z) + Y (πτ − z) = −B (X (z))
A (X (z))

.
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For z ∈ C:
Y(z) + Y(−z) = −B(X(z))

A(X(z)) .

Y (z) + Y (πτ − z) = −B (X (z))
A (X (z))

.

So Y(z) = Y(z + πτ) = Y(z + π)

⇒ Y(z) = c
ϑ(z− γ)ϑ(z− δ)

ϑ(z− ε)ϑ(z− γ − δ + ε)
.
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Part 5: Relation to walks in cones
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WALKS WITH SMALL STEPS IN THE QUARTER PLANE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n of paths in the positive
quadrant with steps in S from (1, 1) to (i, j) of length n.
Equivalently: Determine the generating function

Q(x, y; t) :=
∑
n≥0

∑
i,j≥1

qi,j,ntnxiyj.
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The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.
Problem: Determine the number qi,j,n of paths in the positive
quadrant with steps in S from (1, 1) to (i, j) of length n.
Equivalently: Determine the generating function

Q(x, y; t) :=
∑
n≥0

∑
i,j≥1

qi,j,ntnxiyj.

Systematic approach: 79 distinct non-trivial step sets identified
[Bousquet-Mélou, Mishna, 2010].
All models now classified using many methods

Algebraic methods [Malyshev, Bousquet-Mélou, Mishna]
Asymptotic analyses [Denisov, Wachtel, Mishna, Rechnitzer]
Computer algebra [Bostan, Chyzak, Van Hoeij, Kauers, Pech]
Galois Theory [Dreyfus, Hardouin, Roques, Singer]
Analytic approach [Fayolle, Raschel, Kurkova, Bernardi]
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QUADRANT WALKS

In total: 79 different non-trivial step sets S.

Generating function Q(x, y; t) is...
Algebraic in 4 cases:
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In remaining 47 cases, Q(x, y; t) is not D-algebraic.
[Bousquet-Mélou, Mishna, Denisov, Wachtel, Rechnitzer, Bostan, Chyzak,
Van Hoeij, Kauers, Pech, Dreyfus, Hardouin, Roques, Singer, Fayolle,
Raschel, Kurkova, Bernardi]
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In remaining 47 cases, Q(x, y; t) is not D-algebraic.
[E.P., 2022]: Same nature (in x) for 3/4-plane walks.
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WALKS BY WINDING→ WALKS IN CONES

Concrete relation: The generating function for quadrant walks using
any of the following step sets
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can be derived from expressions for walks by winding angle using the
reflection principal.

Question: Is there an interesting classification of step sets for walks
by winding angle, analogous to that of walks in cones?
Difficulty: W(x, y; t, s) itself is always D-algebraic but never D-finite.
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Equation characterising Q(x, y) ≡ Q(t, x, y) for quadrant walks:

K(x, y)Q(x, y) + R(x, y) = 0.

K(x, y) = 0 is parameterised by

X(z) = c1
ϑ(z− α1)ϑ(z− β1)

ϑ(z− γ1)ϑ(z− δ1)
and Y(z) = c2

ϑ(z− α2)ϑ(z− β2)

ϑ(z− γ2)ϑ(z− δ2)
,

where the constants satisfy αj + βj = γj + δj for j = 1, 2.
So, R(X(z),Y(z)) = 0.
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

In general: K(x, y) = 0 is parameterised by

X(z) = c1
ϑ(z− α1)ϑ(z− β1)

ϑ(z− γ1)ϑ(z− δ1)
and Y(z) = c2

ϑ(z− α2)ϑ(z− β2)

ϑ(z− γ2)ϑ(z− δ2)
,

with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

For Kreweras paths:
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ),

where
t =

1
X(z)Y(z) + X(z)−1 + Y(z)−1 .
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Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ),

where

t = e−
πτ i

3
ϑ′(0, 3τ)

4iϑ(πτ, 3τ) + 6ϑ′(πτ, 3τ)
.
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