Feature learning in terms of spectral flow processes

Cyril Furtlehner

(Inria Saclay, TAU team – UPSaclay, LISN)

Generalities on learning theory

Basic questions are

- how NN are able to generalize prediction on unseen data
- how the performance are affected by the choice of architecture (implicit biases), nature of the data, method of optimization
- Universal behaviour
- Learning dynamics

Neural scaling laws w.r.t.	N	· (#	⊧sam	nples)
and P ($\#$ parameters)		lpha	\approx	1/d
(Kaplan et al. '20)				

Generalities on learning theory

Basic questions are

- how NN are able to generalize prediction on unseen data
- how the performance are affected by the choice of architecture (implicit biases), nature of the data, method of optimization
- Universal behaviour
- Learning dynamics
- 2 regimes :
 - Lazy training regime
 - feature learning regime

(non) overfitting paradox :

mechanism of implicit regularization (early stopping,SGD, benign overfitting...)

Neural scaling laws w.r.t. N (#samples) and P (#parameters) $\alpha \approx 1/d$ (Kaplan et al. '20)

(Belkin et al. '18)

Regression problem and Feature learning

dataset : $\{(\mathbf{x}_s, y_s), s = 1, \dots N\}$, $(\mathbf{x}_s, y_s) \in \mathbb{R}^d \times \mathbb{R}$ from noisy observations

$$y_s = f^*(\mathbf{x}_s) + \epsilon_s$$
 with
$$\begin{cases} f^* \text{ unknown target function} \\ \epsilon & \text{noise} \end{cases}$$

 $\text{Regression model}: \quad f_{w,\theta}(\mathbf{x}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}|\theta) \quad \text{ with } \quad (w,\theta) \in \mathbb{R}^M \times \mathbb{R}^P$

 $\{\phi_k(x| heta), k=1,\ldots M\}$: features to be learned by gradient descent of the loss

$$\mathcal{L}(w,\theta) = \frac{\|w\|^2}{2} + \frac{\alpha}{N} \sum_{s=1}^{N} (f_{w,\theta}(\mathbf{x}_s) - y_s)^2.$$

 α : coupling constant = inverse ridge penalty.

Regression problem and Feature learning

dataset : $\{(\mathbf{x}_s, y_s), s = 1, \dots N\}$, $(\mathbf{x}_s, y_s) \in \mathbb{R}^d \times \mathbb{R}$ from noisy observations

$$y_s = f^*(\mathbf{x}_s) + \epsilon_s$$
 with
$$\begin{cases} f^* \text{ unknown target function} \\ \epsilon & \text{noise} \end{cases}$$

$$\text{Regression model}: \quad f_{w,\theta}(\mathbf{x}) = \sum_{k=1}^M w_k \phi_k(\mathbf{x}|\theta) \quad \text{ with } \quad (w,\theta) \in \mathbb{R}^M \times \mathbb{R}^P$$

 $\{\phi_k(x| heta), k=1,\ldots M\}$: features to be learned by gradient descent of the loss

$$\mathcal{L}(w,\theta) = \frac{\|w\|^2}{2} + \frac{\alpha}{N} \sum_{s=1}^{N} (f_{w,\theta}(\mathbf{x}_s) - y_s)^2.$$

 α : coupling constant = inverse ridge penalty.

What can be said about the evolution of the features $\phi(x|\theta_t)$?

Online learning with time scales separation

Online learning : independent batch of N data at each time step.

Specific setting considered :

- assumming fast convergence of the last layer take $w_t = w(\theta_t)$ solution of the ridge regression
- one gradient step is performed on $\theta_t,$ with new batch of N data

Consider asymptotic limit : $N, M, P \rightarrow \infty$ with fixed ratios $\rho = N/M$ and P/N with RMT.

Part I : Ridge regression and feature alignment

Un quart de siècle pour un quart de plan

Marseille, Iméra 15-17/04/2025 5

Ridge regression problem

Given the signal ${\bf f}$ observed through

$$y = f(\mathbf{x}) + \mathcal{N}(0, \sigma^2), \qquad \mathbf{x} \in \mathbb{R}^d, \ y \in \mathbb{R}$$

a vector of feature functions $\phi(\mathbf{x}) \in \mathbb{R}^M$ find $\mathbf{w} \in \mathbb{R}^M$ minimizing

$$\mathcal{L}(\mathbf{w}) = rac{\|\mathbf{w}\|^2}{2} + lpha E_{ ext{train}} \qquad ext{with} \qquad E_{ ext{train}} = rac{1}{2N} \sum_{s=1}^N \left| y_s - \mathbf{w}^{ op} \phi(\mathbf{x}_s)
ight|^2$$

 α^{-1} : ridge penalty

Ridge regression problem

Given the signal ${\bf f}$ observed through

$$y = f(\mathbf{x}) + \mathcal{N}(0, \sigma^2), \qquad \mathbf{x} \in \mathbb{R}^d, \ y \in \mathbb{R}$$

a vector of feature functions $\phi(\mathbf{x}) \in \mathbb{R}^M$ find $\mathbf{w} \in \mathbb{R}^M$ minimizing

$$\mathcal{L}(\mathbf{w}) = rac{\|\mathbf{w}\|^2}{2} + lpha E_{ ext{train}} \qquad ext{with} \qquad E_{ ext{train}} = rac{1}{2N} \sum_{s=1}^N |y_s - \mathbf{w}^{ op} \phi(\mathbf{x}_s)|^2$$

 α^{-1} : ridge penalty

Optimal solution :
$$\hat{\mathbf{w}} = \alpha \hat{G} \hat{Z}$$
 with
$$\begin{cases} \hat{C} & \stackrel{\text{def}}{=} \frac{1}{N} \sum_{s=1}^{N} \phi(\mathbf{x}_s) \phi(\mathbf{x}_s)^{\top}, \\ \hat{Z} & \stackrel{\text{def}}{=} \frac{1}{N} \sum_{s=1}^{N} \phi(\mathbf{x}_s) y_s, \\ \hat{G} & \stackrel{\text{def}}{=} \left(\mathbb{I} + \alpha \hat{C}\right)^{-1}. \quad \text{(resolvent)} \end{cases}$$

Asymptotics of the generalization error

Train and test errors :

$$E_{\text{train}} = \frac{1}{\alpha} \operatorname{Tr} \left[\hat{G} (\mathbb{I} - \hat{G}) \phi \mathbf{f} \mathbf{f}^{\top} \phi^{\dagger^{\top}} \right] + \sigma_{\text{eff}}^{2} \left(1 - \rho^{-1} + \frac{1}{N} \operatorname{Tr} \left[\hat{G}^{2} \right] \right),$$
$$E_{\text{test}} = \underbrace{\operatorname{Tr} \left[\hat{G} C \hat{G} \phi \mathbf{f} \mathbf{f}^{\top} \phi^{\dagger^{\top}} \right]}_{\text{Bias}} + \underbrace{\sigma_{\text{eff}}^{2} \left(1 + \frac{\alpha}{N} \operatorname{Tr} \left[\hat{G} (\mathbb{I} - \hat{G}) C \right] \right)}_{\text{Variance}}$$

with

$$\rho = \frac{N}{M} \qquad \text{and} \qquad \sigma_{\text{eff}}^2 \stackrel{\text{def}}{=} \sigma^2 + \|\mathbf{f}^{\perp}\|^2.$$

and

 $C \stackrel{\text{def}}{=} \mathbb{E} \left(\phi(\mathbf{x}) \phi(\mathbf{x})^{\top} \right)$ population matrix

Asymptotics of the generalization error

Train and test errors :

$$E_{\text{train}} = \frac{1}{\alpha} \operatorname{Tr} \left[\hat{G} (\mathbb{I} - \hat{G}) \phi \mathbf{f} \mathbf{f}^{\top} \phi^{\dagger^{\top}} \right] + \sigma_{\text{eff}}^{2} \left(1 - \rho^{-1} + \frac{1}{N} \operatorname{Tr} \left[\hat{G}^{2} \right] \right),$$
$$E_{\text{test}} = \underbrace{\operatorname{Tr} \left[\hat{G} C \hat{G} \phi \mathbf{f} \mathbf{f}^{\top} \phi^{\dagger^{\top}} \right]}_{\text{Bias}} + \underbrace{\sigma_{\text{eff}}^{2} \left(1 + \frac{\alpha}{N} \operatorname{Tr} \left[\hat{G} (\mathbb{I} - \hat{G}) C \right] \right)}_{\text{Variance}}$$

with

$$\rho = \frac{N}{M} \qquad \text{and} \qquad \sigma_{\mathrm{eff}}^2 \stackrel{\mathrm{def}}{=} \sigma^2 + \|\mathbf{f}^{\perp}\|^2.$$

and

$$C \stackrel{\text{def}}{=} \mathbb{E} \left(\phi(\mathbf{x}) \phi(\mathbf{x})^{\top} \right)$$
 population matrix

 RMT : asymptotics when $N,M\to\infty$ with fixed ρ heavily investigated

- Dobriban-Wager (2018), average on isotropic signal ($C = \mathbb{I}$)
- Wu-Xu (2020), Richards et al. (2021), average on non-isotropic with restrictions
- Hastié et. al (2022) finite size bounds

Leave-one out argument

Thanks to Sherman-Morrison formula we have

$$\hat{G} = \hat{G}_{\backslash s} + \gamma_s \hat{G}_{\backslash s} \phi(\mathbf{x}_s) \phi(\mathbf{x}_s)^\top \hat{G}_{\backslash s}, \qquad (1)$$

with

$$\gamma_s = \frac{\alpha}{N + K_{\backslash s}(\mathbf{x}_s, \mathbf{x}_s)}$$

 and

$$\hat{K}_{\setminus s}(\mathbf{x},\mathbf{x}') = \phi(\mathbf{x})^{\top} \hat{G}_{\setminus s} \phi(\mathbf{x}')$$

Leave-one out argument

Thanks to Sherman-Morrison formula we have

$$\hat{G} = \hat{G}_{\backslash s} + \gamma_s \hat{G}_{\backslash s} \phi(\mathbf{x}_s) \phi(\mathbf{x}_s)^\top \hat{G}_{\backslash s}, \qquad (1)$$

with

$$\gamma_s = \frac{\alpha}{N + K_{\backslash s}(\mathbf{x}_s, \mathbf{x}_s)}$$

 and

$$\hat{K}_{\setminus s}(\mathbf{x},\mathbf{x}') = \phi(\mathbf{x})^{\top} \hat{G}_{\setminus s} \phi(\mathbf{x}')$$

yields the leave-one out relation :

$$E_{\text{test}}(\mathbf{x}_s) = \left[1 + \frac{1}{N}\hat{K}(\mathbf{x}_s, \mathbf{x}_s)\right]^2 E_{\text{train}}(\mathbf{x}_s)$$

Some RMT formulas

Marchenko-Pastur (1967)

Let
$$\rho = \frac{N}{M}$$
 and $\begin{cases} \nu(dx) & \text{spectral density of population matrix } C \\ \sigma(d\tau) & \text{distribution of } \tau_s = \|\mathbf{x}_s\| \end{cases}$

Some RMT formulas

Marchenko-Pastur (1967)

Let
$$\rho = \frac{N}{M}$$
 and $\begin{cases} \nu(dx) & \text{spectral density of population matrix } C \\ \sigma(d\tau) & \text{distribution of } \tau_s = ||\mathbf{x}_s|| \end{cases}$
Mean field equations : $\begin{cases} \Gamma = \frac{\alpha}{\rho} \int \nu(dx) \frac{x}{1 + \Lambda x} & \left(\stackrel{\text{def}}{=} \lim_{N,M \to \infty} \frac{\alpha}{N} \operatorname{Tr}[\hat{G}C]\right) \\ \Lambda = \alpha \int \sigma(d\tau) \frac{\tau}{1 + \Gamma \tau} & (\text{Effective coupling}) \end{cases}$
Ledoit-Péchet (2011) $\lim_{N,M \to \infty} \frac{1}{M} \operatorname{Tr}[\hat{G}h(C)] = \int \frac{\nu(dx)h(x)}{1 + \Lambda x}$
Deterministic equivalent : $\hat{G} \sim \frac{1}{\mathbb{I} + \Lambda C}$

Spectral decomposition of the signal w.r.t. population matrix

Spectral decomposition of hidden signal along C + transverse modes as

$$f = f^{\parallel} + f^{\perp} \stackrel{\mathsf{def}}{=} \sum_{a=1}^M f_a u_a + \sum_{b>M} f_b u_b$$

power spectrum :
$$\mu_a = M f_a^2$$
 $\mu^{\parallel} \stackrel{\text{def}}{=} \sum_{a=1}^M f_a^2$ $\mu^{\perp} \stackrel{\text{def}}{=} \sum_{b>M} f_b^2$
spectral moments
$$\begin{cases} g_n \stackrel{\text{def}}{=} \int \frac{\nu(dx)}{(1+\Lambda x)^n} & \text{specific to } C \\ \\ \bar{\mu}_n \stackrel{\text{def}}{=} \int \frac{\mu(dx)}{(1+\Lambda x)^n} & \text{alignment measures} \end{cases}$$

with

$$\mu(x) = \lim_{M \to \infty} \frac{1}{M} \sum_{a=1}^{M} \mu_a \delta(x - c_a)$$

Summary of asymptotic expressions

(simplified version $\nu(\tau) = \delta(\tau - 1)$)

Train and test errors :

$$E_{\text{train}} = \frac{\Lambda^2}{\alpha^2} E_{\text{test}}$$
$$E_{\text{test}} = \frac{\rho \left(1 - \bar{\mu}_0 + \bar{\mu}_2\right)}{\left(\rho - \underbrace{\left(1 - 2g_1 + g_2\right)}_{\text{spectral parameter}}\right)}$$

The Loss :

$$\mathcal{L} = rac{\Lambda}{2} ig[1 - ar{\mu}_0 + ar{\mu}_1 ig].$$

Fixed-point equation :

$$\Lambda = \alpha \left(1 - \frac{1}{\rho} \right) + \frac{\alpha}{\rho} g_1$$

signal to noise :

$$\bar{\mu}_0 = \frac{SNR}{1 + SNR}$$

Numerical examples

Number of prior levels (population matrix) : 10 Numbers of training samples : N = 200

Part II : Dynamical systems for feature learning processes

Gradient of the asymptotic loss

Recall

(i) the model
$$f_{\theta}(\mathbf{x}|\theta) = \sum_{k} w_{k}(\theta)\phi_{k}(\mathbf{x}|\theta)$$

(ii) feature map frame (SVD)
$$\begin{cases} \phi_{k}(\mathbf{x}|\theta) = \sum_{a} \sqrt{c_{a}}v_{ka}u_{a}(\mathbf{x}|\theta) & \text{(feature map)} \\ C(\theta) = \int \underbrace{\omega(d\mathbf{x})}_{\text{population density}} \phi(\mathbf{x}|\theta)\phi(\mathbf{x}|\theta)^{t} & \text{(population matrix)} \\ f^{*}(\mathbf{x}) = \sum_{a} f_{a}u_{a}(\mathbf{x}|\theta) + f^{*\perp}(\mathbf{x}) & \text{(target function)} \end{cases}$$

(iii) asymptotic loss : $\mathcal{L} = \frac{\Lambda}{2} [\mu_0 + \bar{\mu}_1] = \mathcal{L} (\{(c_a, \mu_a), a = 1, \ldots\})$

Arbitrary feature deformations $d\Phi_{ab}$ yield

$$d\mathcal{L} = \sum_{a,b} \frac{\partial \mathcal{L}}{\partial \Phi_{ab}}(\{(c_a, f_a), a = 1, \ldots\}) \ d\Phi_{ab},$$

Free dynamics

$$\theta \iff \{\Phi_{ab}\}: \qquad \frac{d\Phi_{ab}}{dt} = -\frac{\partial \mathcal{L}}{\partial \Phi_{ab}},$$

yields the **autonomous systems** for $a = 1, \ldots M$:

$$\dot{\mu}_{a} = \Lambda^{2} \Big[\underbrace{\frac{\mu_{a} \mu_{0}^{\perp}}{1 + \Lambda c_{a}}}_{J_{0 \to a}} + \underbrace{\frac{1}{M} \sum_{b=1, b \neq a}^{M} \frac{c_{a} + c_{b}}{c_{a} - c_{b}} \frac{\mu_{a} \mu_{b}}{\left[1 + \Lambda c_{a}\right] \left[1 + \Lambda c_{b}\right]}}_{\sum_{b \neq a} J_{b \to a}} \Big],$$
$$\dot{c}_{a} = \frac{1}{M} \frac{2\Lambda^{2} c_{a}}{\left[1 + \Lambda c_{a}\right]^{2}} \Big(\mu_{a} + \frac{E_{\text{test}}}{\rho}\Big).$$

 E_{test} , Λ and μ_0^{\perp} macroscopic variables functions of the $\{c_a, \mu_a\} = 2M$ microscopic degrees of freedom. $\mu_a = \mathcal{O}(1/\sqrt{M})$: fast variables, $c_a = \mathcal{O}(1)$: slow variables.

Spectral Flow

Un quart de siècle pour un quart de plan

Marseille, Iméra 15-17/04/2025 16

Macroscopic equations

No closed set of equations, **hierarchy of equations** instead. for instance :

$$\dot{\Lambda} = rac{2\Lambda^3 ar{\mu}_0}{M} \Big(rac{ar{\mu}_3 - ar{\mu}_4}{
ho - \mathcal{Q}} + ar{\mu}_2 rac{g_3 - g_4}{(
ho - \mathcal{Q})^2} \Big),$$

 $\dot{\mu}_0^\perp = -2\Lambda^2 \mu_0^\perp (1 - \mu_0^\perp - \sigma^2) \mu_1,$

(with $Q = 1 - 2g_1 + g_2$) Sigmaid like behavior for trans

Sigmoid like behavior for transverse spectral weight :

$$\mu_0^{\perp}(t) = \frac{1 - \sigma^2}{1 + A \exp\left(2\int_0^t d\tau \Lambda^2(\tau)\bar{\mu}_1(\tau)\right)},$$

Number of prior levels (population matrix) : 5 Numbers of training samples : N = 200

Numerical experiments : under-parameterized regime

 $(\rho = 2)$

Number of prior levels (population matrix) : 5 Numbers of training samples : N = 200

Numerical experiments : over-parameterized regime

Number of prior levels (population matrix) : 5 Numbers of training samples : N = 50

Numerical experiments : over-parameterized regime

 $(\rho = 0.5)$

Number of prior levels (population matrix) : 5 Numbers of training samples : N = 50

General case

feature dynamics depend on architecture dependent kernel :

$$\frac{d\phi_k(\mathbf{x}|\theta_t)}{dt} = -\delta_{k\ell} \int \hat{\omega}(d\mathbf{y}) K_{\theta_t}^{(k\ell)}(\mathbf{x}, \mathbf{y}) \frac{\partial \mathcal{L}}{\partial \phi_\ell(\mathbf{x})}$$

Free case corresponds to no shared parameters + features and signal $\in \mathcal{H}_{K_{\theta_t}}, \forall t$ +natural gradient :

$$K_{\theta_t}^{(k\ell)}(\mathbf{x}, \mathbf{y}) = \delta_{k\ell} K_{\theta_t}(\mathbf{x}, \mathbf{y}) \quad \text{and} \quad \begin{cases} u_a(\mathbf{x}|\theta_t) = \int \omega(d\mathbf{y}) K_{\theta_t}(\mathbf{x}, \mathbf{y}) u_a(\mathbf{y}|\theta_t) \\ f^*(\mathbf{x}) = \int \omega(d\mathbf{y}) K_{\theta_t}(\mathbf{x}, \mathbf{y}) f^*(\mathbf{y}) \end{cases}$$

Otherwise we obtain a non-diagonal kernel in feature frame :

$$K_{ab}^{cd} = \sum_{n=1}^{P} \frac{\partial \Phi_{ab}}{\partial \theta_n} \frac{\partial \Phi_{cd}}{\partial \theta_n} \neq \delta_{ac} \delta_{cd}$$

Case of NN without implicit bias

Way out : D is dimension of functional space, P# parameters with $\gamma=\frac{P}{D}$ fixed

$$K = \frac{d\Phi}{d\theta^t} \frac{d\Phi^t}{d\theta} \qquad (DM) \times (DM) \text{ random matrix of rank } P$$

Result depends only on : Tr[K] = MP, $Tr[K^2] = (1 + \sigma_K^2)M^2P$.

Case of NN without implicit bias

Way out : D is dimension of functional space, P# parameters with $\gamma=\frac{P}{D}$ fixed

$$K = \frac{d\Phi}{d\theta^t} \frac{d\Phi^t}{d\theta} \qquad (DM) \times (DM) \text{ random matrix of rank } P$$

Result depends only on : Tr[K] = MP, $Tr[K^2] = (1 + \sigma_K^2)M^2P$.

$$\begin{array}{ll} \text{Spectral dynamics} & \begin{cases} \dot{c}_a = \gamma \bar{v}_a + \sigma_a \ \eta_{a,t} & (\bar{v} = \text{ free velocity}) \\ \dot{\mu}_a = \gamma \sum_{b \neq a} \left(\bar{J}_{b \rightarrow a} + \sigma_{ab} \ \eta_{b \rightarrow a,t} \right) & (\bar{J} = \text{ free current}) \end{cases} \\ \text{with } \gamma = \frac{P}{D} \text{ noise } \eta_{\cdot,t} = \mathcal{N}(0,1), \ \eta_{a \rightarrow b,t} = -\eta_{b \rightarrow a,t} = \mathcal{N}(0,1), \ \sigma_{ab} = \sigma_{ba} \end{cases}$$

Un quart de siècle pour un quart de plan

(

Case of NN without implicit bias

Way out : D is dimension of functional space, P# parameters with $\gamma=\frac{P}{D}$ fixed

$$K = \frac{d\Phi}{d\theta^t} \frac{d\Phi^t}{d\theta} \qquad (DM) \times (DM) \text{ random matrix of rank } P$$

Result depends only on : Tr[K] = MP, $Tr[K^2] = (1 + \sigma_K^2)M^2P$.

$$\begin{array}{l} \text{Spectral dynamics} \quad \begin{cases} \dot{c}_a = \gamma \bar{v}_a + \sigma_a \ \eta_{a,t} & (\bar{v} = \text{ free velocity}) \\ \dot{\mu}_a = \gamma \sum_{b \neq a} \left(\bar{J}_{b \rightarrow a} + \sigma_{ab} \ \eta_{b \rightarrow a,t} \right) & (\bar{J} = \text{ free current}) \end{cases} \\ (\text{with } \gamma = \frac{P}{D} \text{ noise } \eta_{\cdot,t} = \mathcal{N}(0,1), \ \eta_{a \rightarrow b,t} = -\eta_{b \rightarrow a,t} = \mathcal{N}(0,1), \ \sigma_{ab} = \sigma_{ba}) \end{cases} \\ \text{Main points :} \end{array}$$

Autonomous stochastic system (if $\sigma_{\rm K} = cte$) and $\sigma(\{c_a, \mu_a\}, \sigma_{\rm K}) = \mathcal{O}(\frac{M}{\sqrt{P}}) \times (|\bar{J}|, \bar{v})$

Un quart de siècle pour un quart de plan

Marseille, Iméra 15-17/04/2025 23

Discussion

- generalization of leave-one out argument to other contexts
- incerting implicit bias into the dynamical system
- Monitoring the dynamics in real training
- Low dimensional ML systems like PINNs

Physics viewpoint on free probabilities

To compute trace of random matrices like

Spectral decomposition of errors

$$E_{\text{test}}(
ho, lpha) = \mathcal{R}(
ho, lpha)^2 E_{\text{train}}(
ho, lpha).$$

with

$$\mathcal{R}(\rho,\alpha) = 1 + \frac{\alpha}{\rho} \int dx \nu_{\infty}(x) x g(x,\rho,\alpha),$$
$$E_{\text{train}}(\rho,\alpha) = -\int dx \mu^{\parallel}(x) \frac{\partial}{\partial \alpha} g(x,\rho,\alpha) + (\sigma^{2} + \mu^{\perp}) \left(1 - \rho^{-1} + \frac{\partial}{\partial \alpha} [\alpha g(\rho,\alpha)]\right).$$

with

$$g(\rho, \alpha) = \int dx \nu_{\infty}(x) g(x, \rho, \alpha),$$
$$g(x, \rho, \alpha) = \left(1 + \frac{\alpha x}{\mathcal{R}(\rho, \alpha)}\right)^{-1},$$

and

• u_{∞} : spectral density of C

• $(\mu^{\parallel}, \mu^{\perp})$: spectral power of signal w.r.t. C modes.

Finite size effects

To understand this deviation consider the ratio

 $\rho_D \stackrel{\rm def}{=} \rho \frac{M(D+1)}{D}$: number of training data points per direction in the embedding space

 $ho_D=50,200$ for ho=0.5,2 in the experiments.

Empirical identity operator :
$$\hat{\mathbb{I}} = \frac{1}{N_{\text{train}}} \sum_{s=1}^{N_{\text{train}}} \mathbf{x}_s \mathbf{x}_s^t \xrightarrow[N_{\text{train}} \to \infty] \mathbb{I}$$

Signal as viewed from the training set : $\tilde{f} \stackrel{\text{def}}{=} \hat{\mathbb{I}} f$
RMT yields : $\|\mathbf{f} - \tilde{\mathbf{f}}\|^2 \approx \frac{\|\mathbf{f}\|^2}{\rho_D}$,

training process is pointing to $\tilde{\mathbf{f}}$ instead of \mathbf{f} .

 $ho_D \propto M$: finite size effect, vanishing in the thermodynamics limits.

Special case : 1-level

Single degenerate level needs to be maintained artificially. Spectral parameters take simple form :

$$g_k = \frac{1}{(1 + \Lambda c)^k} = \mu_k = g^k$$

Macroscopic dynamical system :

$$\begin{split} \dot{g} &= -\frac{2\alpha^2 r}{\rho^2 M} \frac{(g+\rho-1)^3}{\rho - (1-g)^2} g^3 (1-g) \Big[1 + \frac{g^2}{\rho - (1-g)^2} \Big] \\ \dot{r} &= \frac{2\alpha^2}{\rho^2} r (1-r-\sigma^2) g (\rho - 1 + g)^2, \\ E_{\text{test}} &= \frac{\rho}{\rho - (1-g)^2} \Big[1 + r (g^2 - 1) \Big]. \end{split}$$
to $g = g_{\min} = \max(0, 1-\rho).$

converges to $g = g_{\min} = \max(0, 1 - \rho)$

Special case : 2-levels

Spectral parameters : $g_k = (1 - \nu)y_1^k + \nu y_2^k$,

$$\mu_k = (1-\mu)y_1^k + \mu y_2^k, \hspace{1cm} ext{with} \hspace{1cm} y_{1,2} \stackrel{ ext{def}}{=} rac{1}{1+\Lambda c_{1,2}} \hspace{1cm} ext{and} \hspace{1cm}
u ext{ fixed}.$$

 $r \to 1 - \sigma^2$ and $\mu \to 1$ fast variables Macroscopic dynamical system

$$\dot{y}_1 = -\frac{2\Lambda^2 r}{M} \frac{y_1(1-y_1)y_2^2}{\rho - \mathcal{Q}} \Big(y_1^2 - y_2(1-y_2) - \frac{g_3 - g_4}{\rho - \mathcal{Q}} \Big),$$

$$\dot{y}_2 = -\frac{2\Lambda^2 r}{M} y_2^3(1-y_2) \Big(\frac{1}{\nu} + \frac{y_2(2y_2-1)}{\rho - \mathcal{Q}} - \frac{g_3 - g_4}{(\rho - \mathcal{Q})^2} \Big),$$

with

$$E_{\text{test}}(y_1, y_2) = \frac{\rho \left[1 + r(y_2^2 - 1)\right]}{\rho - (1 - \nu)(1 - y_1)^2 - \nu(1 - y_2)^2}.$$

Phase portraits

