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l. Two orders on
Dyck paths




Dyck paths = discrete excursions

« A Dyck path of size n=8 (size=number of up steps)

valleys (DU)

vubDDUULUUUDUUDDDDD



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

Poset = partially ordered set



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

« Cover relations (= minimal relations): choose a valley in the path P.

Poset = partially ordered set



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

« Cover relations (= minimal relations): choose a valley in the path P.
Swap the down step and the up step that follows
(the path moves up).

Poset = partially ordered set



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

« Cover relations (= minimal relations): choose a valley in the path P.
Swap the down step and the up step that follows
(the path moves up).

Characterization: P = Q if P lies below @

Poset = partially ordered set



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

« Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows
(the path moves up). /\

Characterization: P < Q if P lies below Q T

Poset = partially ordered set \ /



The simplest poset: Stanley's lattice

« A poset on Dyck paths with n up steps

« Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows
(the path moves up). /\

Characterization: P < Q if P lies below Q T

e Lattice structure: existence of sup and inf A

Poset = partially ordered set \ /



The ascent poset (or: greedy Stanley lattice?)

« A poset on Dyck paths with n up steps
« Cover relations: choose a valley in the path P.

Swap the down step and the ascent that follows

(the path moves up).

[Cheneviere, Nadeau...]



Ascent posets: n = 3, 4




1. The number of

intervals

Interval [P,Q] ~ (P,Q) withP < Q




A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

e Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P,




A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

e Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P,




A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

e Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P,




A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q@

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P.

Corollary: if [P,Q]is an interval, deleting the last peak of P and the
last peak of Q gives a new interval.



A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q@

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P.

Corollary: if [P,Q]is an interval, deleting the last peak of P and the
last peak of Q gives a new interval.



Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

e I1=ad =0at], I=b = bt




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

e I1=ad =0at], I=b = bt

e 0 <D




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

e I1=ad =0at], I=b = bt
e O <D

o if @ =a+)then b’ =b+l.




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff...

e I1=ad =0at], I=b = bt
e O <D

o if @ =a+)then b’ =b+l.




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

e I1=ad =0at], I=b = bt
e 0 <D
o if a =a+)then b' = b+l
A
A
b +
i=a-|
j=b-a




Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q] with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

e I1=ad =0at], I=b = bt
e O <D

o if @ =a+)then b’ =b+l.
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(X, y) — Z t|W|X1(W)yJ (w) .

w

Then the GF of ascent intervals is G=tQ(,)).

* Step-by-step description of the walks:

2 XQ0y) —yQly,y) xQx, 1) —Q0, 1)

Qo) =T+ 1Qbuy) + ™ = = iy =) x—1{y—1




A functional equation with two catalytic variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:
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algebraic
polynomial equation
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A functional equation with two catalytic variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

ty’ xQ(x, 1) — Q(1, 1)

X —Y X — 1

with kernel
txyz

(x—y)(y—1)

Kix,y) =1—tx —

Thm. Ascent intervals have an algebraic GF, namely

G=tQ(1,1) =Z(1—-2Z+27Z3%), where Z=1t(1+2Z)(1+2Z)>.

Asymptotics:
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A functional equation with two catalytic variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

3 _
K% u)ly — QU Y) =y =1 = 2 Qlyyy) — ¢ FE LD
where 2
1 v Xy
Kooy) =T-t= =1

e Observation: an equation of the form
Kix,y)JH(x,y) = 1{x) = J(y)

would probably be easier to solve.
The pair (I(x),J(y)) is a pair of invariants.

Remark: there should really be a factor K(x,y) on the LHS.
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Proving algebraicity via invariants

Strategy [Bernardi, mbm, Raschel 21]

(1) Construct rational invariants (lo(x), Jo(y)) from the kernel (finite
group)

(2) Construct another pair of invariants ((x), Ji(y)) involving the
series Q(x,)) and Q(y,y) from the equation

(3) There are few invariants: lo(x) and li(x) must be polynomially
related over Q((1))(x) = an equation for Q(x,]) (and specializations)
with no y

(4)The solutions of such equations are algebraic Lmbm-Jehanne 06]

Kix,y)H(x,y) = I(x) = J(y)

cf. [Bonnet, Hardouin 24-(a)]
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(1) Constructing invariants from the kernel

The kernel: txu2
Koy) =1 —te— Sy,
Let
] ] T+t
o(x) . tX2+ i + x( t) —tx
t 11—t ] 1+t
Joly) = — Y

y—12 "y—1 w2 yt
This is a pair of invariants:

~ (x=y)(l =y +txy)(x+y —xy —xyt(l +x —xy))
IO(X)_]O(H) — Xzyzt(xt—ﬂ(y—ﬂ K(X>U)

Construction?

A group of order 10 generated by two birational involutions of (x,y)
leaves the kernel unchanged.

Play with the group and the roots of the kernel.
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(2) Constructing invariants from the equation

2+x ] ] tx xQ(x,1)—Q(1,1)
+ + —
t t?x  t(tx—1) 1—1x x — 1

This is a pair of invariants:

I, (x) — T (y): (x—y)(1y_—t1x)l<(x>y) (><Q(x,y —:jQ(y,y) 1—txy ) .



(2) Constructing invariants from the equation

Let

© I(x)—2+x+ ] N ] X xQ(x, 1) —Q(1, 1)
PUT T T T tte—1) 1 —tx X — 1 !
hy=2-—1 4+ 1 4 yy-1QM,y)

This is a pair of invariants:
o _ (x=y)ly—1)Kx,y) { xQ(x,y)—yQ(y,y) T—txy

O R e = ).

Construction: decoupling (multiplicative then additive)
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Then the series
Jo(y) + T (y)* — t(1 +3t)]1 (y)

(no pole at y=0, 1) is independent of y
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(3) Relating invariants

Let IR EE: t 1—t
T A
1 y 1
11(y)=—t2y+——t(y_”+y(y—1)Q(y,y)

Then the series
Jo(y) + T (y)* — t(1 +3t)]1 (y)

(no pole at y=0, 1) is independent of y , and thus equal to

2 —4t—2t*Q(1,1)
(value at y=).

Argument: invariants with no poles are constant



(4) An equation for Q(y,y) -- Algebraicity
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(4) An equation for Q(y,y) -- Algebraicity

Jo(y) + 271 (y)* —t(1 +3t)]1(y) = 2 — 4t — 2t*Q(1,1)

o Yy -1 Qyy)* + (y 2y =5y +1)t—(y—1)(y—2)) Qly,y)
L2tQ(1, 1) + (y—=1) (y—2) = 0.

> A single “catalytic” variable, y
> Unknown series Q(y,y) and Q(),1)

» Systematic algebraic solution [Brown 65, mbm-Jehanne 06]

64 t°Q3, + 16t3 (1162 — 18t — 1) Q3 + (161t* — 452t> 4 238t% — 28t + 1) Qu
+49 t3 — 167t* + 25t = 1.



IV. More posets,

more walks




m-Dyck paths and mirrored m-Dyck paths

Two sub-posets of the ascent poset of size mn, and their intervals

> m-Dyck paths: last peak decomposition
Qx,y) =T+ tx"Q(x,y)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—=y)ly—1) x=T)(y—1)

+ty



m-Dyck paths and mirrored m-Dyck paths

Two sub-posets of the ascent poset of size mn, and their intervals

> m-Dyck paths: last peak decomposition

Q(X>U) = 1 +tXmQ(X>U)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—y)(y—1) (x—=T1)(y—1)

+ty
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m-Dyck paths and mirrored m-Dyck paths

Two sub-posets of the ascent poset of size mn, and their intervals

> m-Dyck paths: last peak decomposition

Q(X>U) = 1 +tXmQ(X>U)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—y)(y—1) (x—=T1)(y—1)

+ty

» Mirrored m-Dyck paths: first peak decomposition

Q(X,U) — 1 i txmyQ(Xﬂ;)__]Q(X) ])

,xmQ,y) — Q1Y) x™Qlx,1)—Q(1,1)
B YO ¥ PTG N CYR §

x=u+tl, y=v+1 = a true quadrant model with finitely many steps

> Explicit asymptotic results = not algebraic, not D-finite for m>1.
[Denisov, Wachtel 15]



Final remarks

e Combinatorial proof for the number/GF of ascent intervals? (m=])

Mm+4)(2n+7)gn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)
* D-algebraicity for m-Dyck paths, m>17?

* Chains of length 3 in the poset? of length d?



Final remarks

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)
* D-algebraicity for m-Dyck paths, m>17?

* Chains of length 3 in the poset? of length d?




