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A press review

Indeed, walks in the quarter plane

naturally encode many 

combinatorial objects (certain 

trees, maps, permutations, Young 

tableaux, etc.). 

[Fayolle-Raschel 15]

This question is ubiquitous since lattice walks encode several classes of mathematical objects in discrete mathematics (permutations, trees, planar maps...), in statistical physics(magnetism, polymers...), in probability theory (branching processes, games of chance...), in operations research (birth-death processes, queueing theory).[Bonnet-Hardouin 24(a)]
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linear, first order, and involving 
derivatives with respect to two variables 

only.
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An il lustration



I. Two orders on 

Dyck paths
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Dyck paths = discrete excursions

● A Dyck path of size n=8 (size=number of up steps)

valleys (DU)

U U D D U U U U D U U D D D D D
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The simplest poset: Stanley’s lattice

Poset = partially ordered set

● A poset on Dyck paths with n up steps
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The simplest poset: Stanley’s lattice

n=3

Poset = partially ordered set

● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

Characterization: P ≤ Q if P lies below Q
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The simplest poset: Stanley’s lattice

n=3

Poset = partially ordered set

● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

Characterization: P ≤ Q if P lies below Q

• Lattice structure: existence of sup and inf
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The ascent poset (or: greedy Stanley lattice?)
● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path P. 

Swap the  down step  and the  ascent  that follows
(the path moves up).
                                                                                    

⋖

P Q

[Chenevière, Nadeau...]
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Ascent posets: n = 3, 4



II. The number of 

intervals

Interval [P,Q] ~ (P,Q) with P ≼ Q
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Q

P
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

a a’

b b’

P

Q
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Recursive construction of ascent intervals
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heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1

a a’

b b’
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

a a’

b b’
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Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

b

1
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

i=a-1
j=b-a

b

j

1 0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

Bijection

j

0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

Bijection

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

j

0
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

with kernel

A functional equation with two catalytic variables

degree 2 in 
x and y
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

with kernel

A functional equation with two catalytic variables

• Well understood (algebraic/differential properties): quadrant walks 
with finitely many small steps

degree 2 in 
x and y
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

with kernel

A functional equation with two catalytic variables

• Well understood (algebraic/differential properties): quadrant walks 
with finitely many small steps

Very few algebraic cases
(solution of polynomial equation)

Only 4 with small steps

degree 2 in 
x and y
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Thm. Ascent intervals have an algebraic GF, namely 

                                                                                        

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

with kernel

A functional equation with two catalytic variables

where
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Thm. Ascent intervals have an algebraic GF, namely 

                                                                                        

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

with kernel

A functional equation with two catalytic variables

where

Asymptotics:
with 



III. Algebraicity via 

Tutte’s invariants

d’après [Bernardi, mbm, Raschel 21]
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

where

A functional equation with two catalytic variables
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• Observation: an equation of the form

would probably be easier to solve.
The pair (I(x),J(y)) is a pair of invariants.

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

where

A functional equation with two catalytic variables
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• Observation: an equation of the form

would probably be easier to solve.
The pair (I(x),J(y)) is a pair of invariants.

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

where

A functional equation with two catalytic variables

Remark: there should really be a factor K(x,y) on the LHS.
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Proving algebraicity via invariants 
Strategy           [Bernardi, mbm, Raschel 21]

(1) Construct rational invariants (I0(x), J0(y)) from the kernel (finite 
group)
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Proving algebraicity via invariants 
Strategy           [Bernardi, mbm, Raschel 21]

(1) Construct rational invariants (I0(x), J0(y)) from the kernel (finite 
group)
(2) Construct another pair of invariants (I1(x), J1(y)) involving the 
series Q(x,1) and Q(y,y) from the equation
(3) There are few invariants: I0(x) and I1(x) must be polynomially 
related over ℚ((t))(x)   an equation for Q(x,1) (and specializations) →

with no y
(4)The solutions of such equations are algebraic [mbm-Jehanne 06]

                                                              cf. [Bonnet, Hardouin 24(a)]



47

(1) Constructing invariants from the kernel
The kernel:

Let
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(1) Constructing invariants from the kernel
The kernel:

Let

This is a pair of invariants:
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(1) Constructing invariants from the kernel
The kernel:

Let

This is a pair of invariants:

Construction?
A group of order 10 generated by two birational involutions of (x,y) 
leaves the kernel unchanged.
Play with the group and the roots of the kernel.
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(2) Constructing invariants from the equation

↪
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(2) Constructing invariants from the equation

Let
↪
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(2) Constructing invariants from the equation

This is a pair of invariants:

Let
↪
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(2) Constructing invariants from the equation

This is a pair of invariants:

Let

Construction: decoupling (multiplicative then additive)

↪
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(3) Relating invariants

Let
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(3) Relating invariants

Let

Then the series 

(no pole at y=0, 1)  is independent of y
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(3) Relating invariants
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Then the series 
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Argument: invariants with no poles are constant
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(3) Relating invariants

Let

Then the series 

(no pole at y=0, 1)  is independent of y

Argument: invariants with no poles are constant

, and thus equal to

(value at y=1).
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(4) An equation for Q(y,y) -- Algebraicity

↪
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(4) An equation for Q(y,y) -- Algebraicity

➔ A single “catalytic” variable, y
➔ Unknown series Q(y,y) and Q(1,1)

↪
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(4) An equation for Q(y,y) -- Algebraicity

➔ A single “catalytic” variable, y
➔ Unknown series Q(y,y) and Q(1,1)
➔ Systematic algebraic solution   [Brown 65, mbm-Jehanne 06]

↪



IV. More posets,

more walks
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➔ m-Dyck paths: last peak decomposition

m-Dyck paths and mirrored m-Dyck paths
Two sub-posets of the ascent poset of size mn, and their intervals
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➔ m-Dyck paths: last peak decomposition

➔ Mirrored m-Dyck paths: first peak decomposition

m-Dyck paths and mirrored m-Dyck paths

x=u+1, y=v+1  a true quadrant model with finitely many steps→

Two sub-posets of the ascent poset of size mn, and their intervals
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➔ m-Dyck paths: last peak decomposition

➔ Mirrored m-Dyck paths: first peak decomposition

m-Dyck paths and mirrored m-Dyck paths

x=u+1, y=v+1  a true quadrant model with finitely many steps→

➔ Explicit asymptotic results ⇒ not algebraic, not D-finite for m>1.
[Denisov, Wachtel 15]

Two sub-posets of the ascent poset of size mn, and their intervals
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• D-algebraicity for m-Dyck paths, m>1?

• Chains of length 3 in the poset? of length d?
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• D-algebraicity for m-Dyck paths, m>1?

• Chains of length 3 in the poset? of length d?

 Thanks for your attention


